Cloze Test Helps: Effective Video Anomaly Detection via Learning to Complete Video Events
被引:117
|
作者:
Yu, Guang
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Def Technol, Changsha, Peoples R ChinaNatl Univ Def Technol, Changsha, Peoples R China
Yu, Guang
[1
]
Wang, Siqi
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Def Technol, Changsha, Peoples R ChinaNatl Univ Def Technol, Changsha, Peoples R China
Wang, Siqi
[1
]
Cai, Zhiping
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Def Technol, Changsha, Peoples R ChinaNatl Univ Def Technol, Changsha, Peoples R China
Cai, Zhiping
[1
]
Zhu, En
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Def Technol, Changsha, Peoples R ChinaNatl Univ Def Technol, Changsha, Peoples R China
Zhu, En
[1
]
Xu, Chuanfu
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Def Technol, Changsha, Peoples R ChinaNatl Univ Def Technol, Changsha, Peoples R China
Xu, Chuanfu
[1
]
Yin, Jianping
论文数: 0引用数: 0
h-index: 0
机构:
Dongguan Univ Technol, Dongguan, Peoples R ChinaNatl Univ Def Technol, Changsha, Peoples R China
Yin, Jianping
[2
]
Kloft, Marius
论文数: 0引用数: 0
h-index: 0
机构:
TU Kaiserslautern, Kaiserslautern, GermanyNatl Univ Def Technol, Changsha, Peoples R China
Kloft, Marius
[3
]
机构:
[1] Natl Univ Def Technol, Changsha, Peoples R China
[2] Dongguan Univ Technol, Dongguan, Peoples R China
[3] TU Kaiserslautern, Kaiserslautern, Germany
来源:
MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA
|
2020年
基金:
中国国家自然科学基金;
关键词:
Video anomaly detection;
video event completion;
CLASSIFICATION;
D O I:
10.1145/3394171.3413973
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
As a vital topic in media content interpretation, video anomaly detection (VAD) has made fruitful progress via deep neural network (DNN). However, existing methods usually follow a reconstruction or frame prediction routine. They suffer from two gaps: (1) They cannot localize video activities in a both precise and comprehensive manner. (2) They lack sufficient abilities to utilize high-level semantics and temporal context information. Inspired by frequently-used cloze test in language study, we propose a brand-new VAD solution named Video Event Completion (VEC) to bridge gaps above: First, we propose a novel pipeline to achieve both precise and comprehensive enclosure of video activities. Appearance and motion are exploited as mutually complimentary cues to localize regions of interest (RoIs). A normalized spatio-temporal cube (STC) is built from each RoI as a video event, which lays the foundation of VEC and serves as a basic processing unit. Second, we encourage DNN to capture high-level semantics by solving a visual cloze test. To build such a visual cloze test, a certain patch of STC is erased to yield an incomplete event (IE). The DNN learns to restore the original video event from the IE by inferring the missing patch. Third, to incorporate richer motion dynamics, another DNN is trained to infer erased patches' optical flow. Finally, two ensemble strategies using different types of IE and modalities are proposed to boost VAD performance, so as to fully exploit the temporal context and modality information for VAD. VEC can consistently outperform state-of-the-art methods by a notable margin (typically 1.5%-5% AUROC) on commonly-used VAD benchmarks. Our codes and results can be verified at github.com/yuguangnudt/VEC_VAD.
机构:
BoHai Univ, Coll Informat Sci & Technol, Jin Shan St, Jinzhou 121010, Peoples R ChinaBoHai Univ, Coll Informat Sci & Technol, Jin Shan St, Jinzhou 121010, Peoples R China
Zhang, Liang
Li, Shifeng
论文数: 0引用数: 0
h-index: 0
机构:
BoHai Univ, Coll Informat Sci & Technol, Jin Shan St, Jinzhou 121010, Peoples R ChinaBoHai Univ, Coll Informat Sci & Technol, Jin Shan St, Jinzhou 121010, Peoples R China
Li, Shifeng
Luo, Xi
论文数: 0引用数: 0
h-index: 0
机构:
BoHai Univ, Coll Informat Sci & Technol, Jin Shan St, Jinzhou 121010, Peoples R ChinaBoHai Univ, Coll Informat Sci & Technol, Jin Shan St, Jinzhou 121010, Peoples R China
Luo, Xi
Liu, Xiaoru
论文数: 0引用数: 0
h-index: 0
机构:
BoHai Univ, Coll Informat Sci & Technol, Jin Shan St, Jinzhou 121010, Peoples R ChinaBoHai Univ, Coll Informat Sci & Technol, Jin Shan St, Jinzhou 121010, Peoples R China
Liu, Xiaoru
Zhang, Ruixuan
论文数: 0引用数: 0
h-index: 0
机构:
Hikvision Res Inst, Qian Mo St, Hangzhou 310052, Peoples R ChinaBoHai Univ, Coll Informat Sci & Technol, Jin Shan St, Jinzhou 121010, Peoples R China
机构:
Fujian Univ Technol, Sch Comp Sci & Math, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou 350118, Peoples R ChinaFujian Univ Technol, Sch Comp Sci & Math, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou 350118, Peoples R China
Wu, Yuntao
Zeng, Kun
论文数: 0引用数: 0
h-index: 0
机构:
Minjiang Univ, Sch Comp & Big Data, Fujian Prov Key Lab Informat Proc & Intelligent Co, Fuzhou 350121, Peoples R ChinaFujian Univ Technol, Sch Comp Sci & Math, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou 350118, Peoples R China
Zeng, Kun
Li, Zuoyong
论文数: 0引用数: 0
h-index: 0
机构:
Minjiang Univ, Sch Comp & Big Data, Fujian Prov Key Lab Informat Proc & Intelligent Co, Fuzhou 350121, Peoples R ChinaFujian Univ Technol, Sch Comp Sci & Math, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou 350118, Peoples R China
Li, Zuoyong
Peng, Zhonghua
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Univ Technol, Sch Comp Sci & Math, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou 350118, Peoples R ChinaFujian Univ Technol, Sch Comp Sci & Math, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou 350118, Peoples R China
Peng, Zhonghua
Chen, Xiaobo
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Technol & Business Univ, Sch Comp Sci & Technol, Yantai 264005, Peoples R ChinaFujian Univ Technol, Sch Comp Sci & Math, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou 350118, Peoples R China
Chen, Xiaobo
Hu, Rong
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Univ Technol, Sch Comp Sci & Math, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou 350118, Peoples R China
Wuyi Univ, Key Lab Cognit Comp & Intelligent Informat Proc Fu, Wuyishan 354300, Peoples R ChinaFujian Univ Technol, Sch Comp Sci & Math, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou 350118, Peoples R China