Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system involving a tensor-valued sensitivity with saturation

被引:54
作者
Liu, Ji [1 ]
Wang, Yifu [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab MCAACI, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Keller-Segel; Navier-Stokes; Tensor-valued; Global existence; PARABOLIC CHEMOTAXIS SYSTEM; FINITE-TIME BLOWUP; BOUNDEDNESS; EXISTENCE; DIFFUSION; MODELS;
D O I
10.1016/j.jde.2017.01.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the following Keller-Segel-Navier-Stokes system { n(t) + u . del n = Delta n - del . (nS(x, n, c)del c), x epsilon Omega, t > 0, c(t) + u . del c = Delta c - c + n, x epsilon Omega, t > 0, u(t) + K(u . del)u = Delta u + del P + n del phi, x epsilon Omega, t > 0, del . u = 0, x epsilon Omega, t > 0 , where Omega subset of R-3 is a bounded domain with smooth boundary partial derivative Omega, K epsilon R and S denotes a given tensor-valued function fulfilling vertical bar S(x, n, c)vertical bar <= C-S / (1 + n)(alpha) with some C-S > 0 and alpha > 0. As the case K = 0 has been considered in [25], it is shown in the present paper that the corresponding initial-boundary problem with K not equal 0 admits at least one global weak solution if alpha >= 3/7. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:5271 / 5305
页数:35
相关论文
共 35 条
[1]  
[Anonymous], 2001, The Navier-Stokes equations. An elementary functional analytic approach
[2]  
[Anonymous], 1989, Geometric Theory of Semilinear Parabolic Partial Differential Equations, DOI DOI 10.1007/BFB0089647
[3]   Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation [J].
Cao, Xinru ;
Ishida, Sachiko .
NONLINEARITY, 2014, 27 (08) :1899-1913
[4]   Finite-Time Blowup in a Supercritical Quasilinear Parabolic-Parabolic Keller-Segel System in Dimension 2 [J].
Cieslak, Tomasz ;
Stinner, Christian .
ACTA APPLICANDAE MATHEMATICAE, 2014, 129 (01) :135-146
[5]   Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions [J].
Cieslak, Tomasz ;
Stinner, Christian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) :5832-5851
[6]   Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system [J].
Cieslak, Tomasz ;
Laurencot, Philippe .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (01) :437-446
[7]   Boundedness in a fully parabolic chemotaxis system with singular sensitivity [J].
Fujie, Kentarou .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (01) :675-684
[8]   ABSTRACT LP ESTIMATES FOR THE CAUCHY-PROBLEM WITH APPLICATIONS TO THE NAVIER-STOKES EQUATIONS IN EXTERIOR DOMAINS [J].
GIGA, Y ;
SOHR, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 102 (01) :72-94
[10]   SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM [J].
GIGA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :186-212