Piezoresistive Characteristics of Single Wall Carbon Nanotube/Polyimide Nanocomposites

被引:75
作者
Kang, Jin Ho [1 ]
Park, Cheol [1 ,2 ]
Scholl, Jonathan A. [3 ]
Brazin, Amy H. [4 ]
Holloway, Nancy M. [5 ]
High, James W. [6 ]
Lowther, Sharon E. [7 ]
Harrison, Joycelyn S. [7 ]
机构
[1] Natl Inst Aerosp, Hampton, VA 23681 USA
[2] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
[3] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA
[4] MIT, Cambridge, MA 02139 USA
[5] NASA, Langley Res Ctr, Fabricat Technol Dev Branch, Elect Applicat Technol Sect, Hampton, VA 23681 USA
[6] NASA, Langley Res Ctr, Elect Syst Branch, Hampton, VA 23681 USA
[7] NASA, Langley Res Ctr, Adv Mat & Proc Branch, Hampton, VA 23681 USA
关键词
carbon nanotubes; composites; high performance polymers; piezoresistance; polyimides; PIEZOELECTRIC PROPERTIES; NANOTUBES; COMPOSITES; CONDUCTION; DISPERSION; POLYIMIDE; RUBBER; BLACK;
D O I
10.1002/polb.21705
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A systematic study of the effect of single wall carbon nanotubes (SWCNTs) on the enhanced piezoresistive sensitivity of polyimide nanocomposites from below to above percolation was accomplished. The maximum piezoresistive stress coefficient (Pi) of 1.52 x 10(-3) MPa-1 was noted at just above the percolation threshold concentration (Phi similar to 0.05 wt %) of SWCNT. This coefficient value exceeds those of metallic piezoresistive materials by two orders of magnitude (4.25 x 10(-5) MPa-1 for aluminum). The high piezoresistive characteristics appear to originate from a change in the intrinsic resistivity of the composite caused by the variation of the tunneling distance between conducting inclusions (SWCNTs) under compression or tension. (C) 2009 Wiley Periodicals, Inc.* J Polym Sci Part B: Polym Phys 47: 994-1003, 2009
引用
收藏
页码:994 / 1003
页数:10
相关论文
共 37 条
[1]   CONDUCTION IN GRANULAR METALS - VARIABLE-RANGE HOPPING IN A COULOMB GAP [J].
ADKINS, CJ .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (07) :1253-1259
[2]   The electrical resistance response of continuous carbon fibre composite laminates to mechanical strain [J].
Angelidis, N ;
Wei, CY ;
Irving, PE .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2004, 35 (10) :1135-1147
[3]   Study of piezoresistance effect in carbon fibers [J].
Blazewicz, S ;
Patalita, B ;
Touzain, P .
CARBON, 1997, 35 (10-11) :1613-1618
[4]   A metal-polymer composite with unusual properties [J].
Bloor, D ;
Donnelly, K ;
Hands, PJ ;
Laughlin, P ;
Lussey, D .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (16) :2851-2860
[5]   Temperature dependent piezoresistive effect of multi-walled carbon nanotube films [J].
Cao, C. L. ;
Hu, C. G. ;
Xiong, Y. F. ;
Han, X. Y. ;
Xi, Y. ;
Miao, J. .
DIAMOND AND RELATED MATERIALS, 2007, 16 (02) :388-392
[6]   Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching [J].
Cao, J ;
Wang, Q ;
Dai, HJ .
PHYSICAL REVIEW LETTERS, 2003, 90 (15) :4
[7]   Conduction mechanisms in carbon-loaded composites [J].
Dawson, JC ;
Adkins, CJ .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (43) :8321-8338
[8]   Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity [J].
Du, FM ;
Scogna, RC ;
Zhou, W ;
Brand, S ;
Fischer, JE ;
Winey, KI .
MACROMOLECULES, 2004, 37 (24) :9048-9055
[9]   CHARGE TRANSPORT IN POLYETHYLENE GRAPHITE COMPOSITE-MATERIALS [J].
EZQUERRA, TA ;
KULESCZA, M ;
CRUZ, CS ;
BALTACALLEJA, FJ .
ADVANCED MATERIALS, 1990, 2 (12) :597-600
[10]   An introduction to structural health monitoring [J].
Farrar, Charles R. ;
Worden, Keith .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 365 (1851) :303-315