SIMPLE NORMAL CROSSING FANO VARIETIES AND LOG FANO MANIFOLDS

被引:6
|
作者
Fujita, Kento [1 ]
机构
[1] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
基金
日本学术振兴会;
关键词
CLASSIFICATION; CONTRACTIONS; 3-FOLDS;
D O I
10.1215/00277630-2430136
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A projective log variety (X, D) is called a log Fano manifold if X is smooth and if D is a reduced simple normal crossing divisor on X with -(K-X + D) ample The n-dimensional log Fano manifolds (X, D) with nonzero D are classified in this article when the log Fano index r of (X, D) satisfies either r >= n/2 with rho(X) >= 2 or r >= n - 2. This result is a partial generalization of the classification of logarithmic Fano 3-folds by Maeda.
引用
收藏
页码:95 / 123
页数:29
相关论文
共 50 条