de Haas-van Alphen and Shubnikov-de Haas oscillations in RAgSb2 (R = Y, La-Nd, Sm)

被引:51
|
作者
Myers, KD [1 ]
Bud'ko, SL
Antropov, VP
Harmon, BN
Canfield, PC
Lacerda, AH
机构
[1] Iowa State Univ, Ames Lab, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[3] Univ Calif Los Alamos Natl Lab, Los Alamos Facil, Natl High Field Lab, Los Alamos, NM 87545 USA
来源
PHYSICAL REVIEW B | 1999年 / 60卷 / 19期
关键词
D O I
10.1103/PhysRevB.60.13371
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
de Haas-van Alphen and Shubnikov-de Haas oscillations have been used to study the Fermi surface of the simple tetragonal RAgSb2 series of compounds with R = Y, La-Nd, and Sm. The high quality of the flux-grown single crystals, coupled with very small extremal cross sections of Fermi surface, allow the observation of quantum oscillations at modest fields (H<30 kG) and high temperatures (up to 25 K in SmAgSb2). For H parallel to c, the effective masses, determined from the temperature dependence of the amplitudes, are quite small, typically between 0.07 and 0.5m(0). The topology of the Fermi surface was determined from the angular dependence of the frequencies for R = Y, La, and Sm. In SmAgSb2, antiferromagnetic ordering below 8.8 K is shown to dramatically alter the Fermi surface. For LaAgSb2 and CeAgSb2, the effect of applied hydrostatic pressure on the frequencies was also studied. Finally, the experimental data were compared to the Fermi surface calculated within the tight-binding linear muffin-tin orbital approximation. Overall, the calculated electronic structure was found to be consistent with the experimental data. [S0163-1829(99)09443-6].
引用
收藏
页码:13371 / 13379
页数:9
相关论文
共 50 条
  • [1] de Haas-van Alphen and Shubnikov-de Haas Effect in CeAs
    Nimori, S.
    Aoki, H.
    Terashima, T.
    Kido, G.
    Journal of the Physical Society of Japan, 65 (08):
  • [2] de Haas-van Alphen and Shubnikov-de Haas effect in CeAs
    Nimori, S
    Aoki, H
    Terashima, T
    Kido, G
    Suzuki, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (08) : 2728 - 2729
  • [3] Shubnikov-de Haas and de Haas-van Alphen oscillations in Czochralski grown CoSi single crystal
    Sasmal, Souvik
    Dwari, Gourav
    Maity, Bishal Baran
    Saini, Vikas
    Thamizhavel, A.
    Mondal, Rajib
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (42)
  • [4] Shubnikov-de Haas and de Haas-van Alphen oscillations in the topological semimetal CaAl4
    Xu, Sheng
    Zhang, Jian-Feng
    Wang, Yi-Yan
    Sun, Lin-Lin
    Wang, Huan
    Su, Yuan
    Wang, Xiao-Yan
    Liu, Kai
    Xia, Tian-Long
    PHYSICAL REVIEW B, 2019, 99 (11)
  • [5] Investigation of de Haas-van Alphen and Shubnikov-de Haas quantum oscillations in PrTe3
    Luo, Xiong
    Ma, Xiaoxuan
    Zhang, Junchao
    Xing, Yu
    Shen, Aoli
    Ye, Haoran
    Shen, Shengchun
    Peng, Jin
    Cao, Shixun
    Dong, Shuai
    Li, Linglong
    PHYSICAL REVIEW B, 2024, 109 (03)
  • [6] Signature of Dirac semimetal states in gray arsenic studied by de Haas-van Alphen and Shubnikov-de Haas quantum oscillations
    An, Linlin
    Zhu, Xiangde
    Qian, Yuting
    Xi, Chuanying
    Ning, Wei
    Weng, Hongming
    Tian, Mingliang
    PHYSICAL REVIEW B, 2020, 101 (20)
  • [7] DE HAAS-VAN ALPHEN AND DE HAAS-SHUBNIKOV EFFECTS IN GOLD ANTIMONIDE
    AHN, J
    SELLMYER, DJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (03): : 294 - &
  • [8] Simultaneous measurement of the de Haas-van Alphen and the Shubnikov-de Haas effect in a two-dimensional electron system
    Ruhe, N.
    Springborn, J. I.
    Heyn, Ch.
    Wilde, M. A.
    Grundler, D.
    PHYSICAL REVIEW B, 2006, 74 (23)
  • [9] Observation of de Haas-Shubnikov and de Haas-Van Alphen oscillations in β-(BEDT-TTF)2AuI2
    Parker, I.D.
    Pigram, D.D.
    Friend, R.H.
    Kurmoo, M.
    Day, P.
    Synthetic Metals, 1988, 27 (1-2) : 387 - 392
  • [10] Shubnikov-de-Haas and de-Haas-van-Alphen oscillations in silicon nanostructures
    Bagraev, N. T.
    Brilinskaya, E. S.
    Gets, D. S.
    Klyachkin, L. E.
    Malyarenko, A. M.
    Romanov, V. V.
    SEMICONDUCTORS, 2011, 45 (11) : 1447 - 1452