Extracellular rigidity sensing by talin isoform-specific mechanical linkages

被引:258
|
作者
Austen, Katharina [1 ]
Ringer, Pia [1 ]
Mehlich, Alexander [2 ]
Chrostek-Grashoff, Anna [1 ]
Kluger, Carleen [1 ]
Klingner, Christoph [1 ]
Sabass, Benedikt [3 ]
Zent, Roy [4 ]
Rief, Matthias [2 ,5 ]
Grashoff, Carsten [1 ]
机构
[1] Max Planck Inst Biochem, Grp Mol Mechanotransduct, D-82152 Martinsried, Germany
[2] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany
[3] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[4] Vanderbilt Univ, Dept Med, Div Nephrol, Nashville, TN 37232 USA
[5] Munich Ctr Integrated Prot Sci, D-81377 Munich, Germany
关键词
NANOSCALE ARCHITECTURE; VINCULIN BINDING; E-CADHERIN; INTEGRIN; FORCES; REVEALS; TENSION; ACTIVATION; PROTEINS;
D O I
10.1038/ncb3268
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The ability of cells to adhere and sense differences in tissue stiffness is crucial for organ development and function. The central mechanisms by which adherent cells detect extracellular matrix compliance, however, are still unknown. Using two single-molecule-calibrated biosensors that allow the analysis of a previously inaccessible but physiologically highly relevant force regime in cells, we demonstrate that the integrin activator talin establishes mechanical linkages following cell adhesion, which are indispensable for cells to probe tissue stiffness. Talin linkages are exposed to a range of piconewton forces and bear, on average, 7-10 pN during cell adhesion depending on their association with F-actin and vinculin. Disruption of talin's mechanical engagement does not impair integrin activation and initial cell adhesion but prevents focal adhesion reinforcement and thus extracellular rigidity sensing. Intriguingly, talin mechanics are isoform specific so that expression of either talin-1 or talin-2 modulates extracellular rigidity sensing.
引用
收藏
页码:1597 / 1606
页数:10
相关论文
共 50 条
  • [21] The limits of promiscuity:: Isoform-specific dimerization of filamins
    Himmel, M
    van der Ven, PFM
    Stöcklein, W
    Fürst, DO
    BIOCHEMISTRY, 2003, 42 (02) : 430 - 439
  • [22] Importance of GFAP isoform-specific analyses in astrocytoma
    van Bodegraven, Emma J.
    van Asperen, Jessy, V
    Robe, Pierre A. J.
    Hol, Elly M.
    GLIA, 2019, 67 (08) : 1417 - 1433
  • [23] Isoform-specific targeting of PKA to multivesicular bodies
    Day, Michele E.
    Gaietta, Guido M.
    Sastri, Mira
    Koller, Antonius
    Mackey, Mason R.
    Scott, John D.
    Perkins, Guy A.
    Ellisman, Mark H.
    Taylor, Susan S.
    JOURNAL OF CELL BIOLOGY, 2011, 193 (02): : 347 - 363
  • [24] Akt Isoform-specific Signaling in Prostate Cancer
    Chin, R.
    Toker, A.
    EUROPEAN JOURNAL OF CANCER, 2012, 48 : S162 - S162
  • [25] Isoform-specific ras functions in development and cancer
    Quinlan, Margaret P.
    Settleman, Jeffrey
    FUTURE ONCOLOGY, 2009, 5 (01) : 105 - 116
  • [26] Isoform-specific differences in the nitrite reductase activity
    Slama-Schwok, Anny
    Mikula, Ivan
    Durocher, Suzanne
    Martasek, Pavel
    Mutus, Bulent
    NITRIC OXIDE-BIOLOGY AND CHEMISTRY, 2009, 20 : S43 - S43
  • [27] Development of Tau Isoform-Specific Reduction Therapy
    Lloyd, Bonnie C.
    Garza, Irvin T.
    Alvarado, Karina
    Knight, Krishanna
    Bailey, Rachel M.
    MOLECULAR THERAPY, 2024, 32 (04) : 162 - 163
  • [28] Isoform-specific functions of Akt in cell motility
    L. B. McKenna
    G.-L. Zhou
    J. Field
    Cellular and Molecular Life Sciences, 2007, 64 : 2723 - 2725
  • [29] Isoform-specific ubiquitination of the RET receptor.
    Crupi, M. J.
    Hyndman, B. D.
    Bone, L. N.
    Antonescu, C. N.
    Mulligan, L. M.
    MOLECULAR BIOLOGY OF THE CELL, 2016, 27
  • [30] Isoform-specific activation of Akt involvement in hepatocarcinogenesis
    Imache, Mohamed R.
    Pawlotsky, Jean-Michel
    Lerat, Herve
    HEPATIC ONCOLOGY, 2015, 2 (03) : 213 - 216