An Eight-Wavelength BH DFB Laser Array With Equivalent Phase Shifts for WDM Systems

被引:25
作者
Li, Jingsi [1 ]
Tang, Song [2 ]
Wang, Jeffery [3 ]
Liu, Yue [3 ]
Chen, Xiangfei [2 ]
Cheng, Julian [1 ]
机构
[1] Univ Texas Austin, Microelect Res Ctr, Dept Elect Engn, Austin, TX 78758 USA
[2] Nanjing Univ, Microwave Photon Technol Lab, Natl Lab Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] ATG Technol Inc, San Jose, CA 95129 USA
关键词
Distributed feedback laser; semiconductor laser arrays; wavelength division multiplexing; photonic integrated circuits;
D O I
10.1109/LPT.2014.2327113
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we report an eight-wavelength monolithically integrated buried heterostructure distributed feedback laser array with quarter-wave equivalent phase shifts. The laser array operating at 1.3 mu m has a chip size of 2 mm x 250 mu m. Lasing channel spacing is designed to be 800 GHz (similar to 4.6 nm at 1.3 mu m). The laser array exhibits accurate wavelength control and stable single mode lasing operation over a wide range of injection currents and different ambient temperatures. The measured linewidth of these lasers is 278 kHz at 65-mA bias current. In addition, the lasing wavelength of the whole laser array can be tuned continuously over 38.3 nm without mode hopping. The proposed method offers a practical approach of integrated laser array fabrication for wavelength-division multiplexing systems.
引用
收藏
页码:1593 / 1596
页数:4
相关论文
共 14 条
[1]   Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review [Invited] [J].
Banerjee, A ;
Park, Y ;
Clarke, F ;
Song, H ;
Yang, SH ;
Kramer, G ;
Kim, K ;
Mukherjee, B .
JOURNAL OF OPTICAL NETWORKING, 2005, 4 (11) :737-758
[2]  
Hong Liu, 2010, Proceedings of the 18th IEEE Symposium on High Performance Interconnects (HOTI 2010), P113, DOI 10.1109/HOTI.2010.15
[3]   Widely wavelength-tunable DFB laser array integrated with funnel combiner [J].
Ishii, Hiroyuki ;
Kasaya, Kazuo ;
Oohashi, Hiromi ;
Shibata, Yasuo ;
Yasaka, Hiroshi ;
Okamoto, Katsunari .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2007, 13 (05) :1089-1094
[4]  
Li J., 2014, P OPT FIB COMM C
[5]  
Li J., 2009, P ACP NOV
[6]   A Multiexposure Technology for Sampled Bragg Gratings and its Applications in Dual-Wavelength Lasing Generation and OCDMA En/Decoding [J].
Li, Jingsi ;
Cheng, Yun ;
Yin, Zuowei ;
Jia, Linghui ;
Chen, Xiangfei ;
Liu, Shengchun ;
Li, Simin ;
Lu, Yanqing .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2009, 21 (21) :1639-1641
[7]   Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology [J].
Li, Jingsi ;
Wang, Huan ;
Chen, Xiangfei ;
Yin, Zuowei ;
Shi, Yuechun ;
Lu, Yanqing ;
Dai, Yitang ;
Zhu, Hongliang .
OPTICS EXPRESS, 2009, 17 (07) :5240-5245
[8]   Laser linewidth measurements using self-homodyne detection with short delay [J].
Ludvigsen, H ;
Tossavainen, M ;
Kaivola, M .
OPTICS COMMUNICATIONS, 1998, 155 (1-3) :180-186
[9]   NOVEL METHOD TO FABRICATE CORRUGATION FOR A LAMBDA/4-SHIFTED DISTRIBUTED FEEDBACK LASER USING A GRATING PHOTOMASK [J].
OKAI, M ;
TSUJI, S ;
CHINONE, N ;
HARADA, T .
APPLIED PHYSICS LETTERS, 1989, 55 (05) :415-417
[10]   20-mW widely tunable laser module using DFB array and MEMS selection [J].
Pezeshki, B ;
Vail, E ;
Kubicky, J ;
Yoffe, G ;
Heanue, J ;
Epp, P ;
Rishton, S ;
Ton, D ;
Faraji, B ;
Emanuel, M ;
Hong, X ;
Sherback, M ;
Agrawal, V ;
Chipman, C ;
Razazan, T .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2002, 14 (10) :1457-1459