Copper nitrate hydrate as novel high capacity anode material for lithium-ion batteries

被引:14
作者
Wu, Kaiqiang [1 ]
Wang, Dongjie [1 ]
Shao, Lianyi [1 ]
Shui, Miao [1 ]
Ma, Rui [1 ]
Lao, Mengmeng [1 ]
Long, Nengbing [1 ]
Ren, Yuanlong [1 ]
Shu, Jie [1 ]
机构
[1] Ningbo Univ, Fac Mat Sci & Chem Engn, Ningbo 315211, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Copper nitrate hydrate; Anode material; Heat-treatment; NEGATIVE ELECTRODE MATERIAL; TRANSITION-METAL NITRIDE; LI DEINTERCALATION; THERMAL-STABILITY; STRUCTURAL-CHANGE; OXIDE; ELECTROCHEMISTRY; CUO;
D O I
10.1016/j.jpowsour.2013.09.079
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For the first time, Cu(NO3)(2)center dot xH(2)O (x < 2.5) is investigated as a new lithium storage anode material for lithium-ion batteries. The impressive characteristic of Cu(NO3)(2)center dot xH(2)O(x <= 2.5)/Li cell is the high initial discharge capacity reaching to around 2200 mAh g(-1). To make a comparison, Cu(NO3)(2)center dot 2.5H(2)O electrodes are used as raw materials and heat-treated at 80, 120 and 160 degrees C. Among all the three samples, Cu(NO3)(2)center dot xH(2)O (x < 2.5) obtained at 160 degrees C shows the highest reversible capacity of 597.6 mAh g(-1) and the best cycling stability after 30 cycles. The difference in electrochemical behaviors is attributed to the variation of surface morphology, crystal water and particles size after heat-treatment at different temperatures. Besides, the thermal reaction results also show that Cu(NO3)(2)center dot xH(2)O (x < 2.5) obtained at 160 degrees C has the highest thermal stability among all the three samples after repeated cycles. The present findings can provide the fact that Cu(NO3)(2)center dot xH(2)O (<= 2.5) may be a promising anode material for lithiumion batteries. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:205 / 211
页数:7
相关论文
共 23 条
[1]   A new lithium-copper-iron-oxide as a negative electrode material for lithium-ion batteries [J].
Chang, SK ;
Kim, HJ ;
Hong, ST .
JOURNAL OF POWER SOURCES, 2003, 119 :69-75
[2]   Single-crystalline nanotubes of spinel lithium nickel manganese oxide with lithium titanate anode for high-rate lithium ion batteries [J].
Ding, Yuan-Li ;
Goh, Bee Min ;
Zhang, Han ;
Loh, Kian Ping ;
Lu, Li .
JOURNAL OF POWER SOURCES, 2013, 236 :1-9
[3]  
Du Pasquier A, 1998, J ELECTROCHEM SOC, V145, P472
[4]   Facile fabrication of cuprous oxide nanocomposite anode films for flexible Li-ion batteries via thermal oxidation [J].
Lamberti, A. ;
Destro, M. ;
Bianco, S. ;
Quaglio, M. ;
Chiodoni, A. ;
Pirri, C. F. ;
Gerbaldi, C. .
ELECTROCHIMICA ACTA, 2012, 70 :62-68
[5]   Iron oxide/carbon microsphere lithium-ion battery electrode with high capacity and good cycling stability [J].
Li, Meng-Yuan ;
Wang, Yan ;
Liu, Chun-Ling ;
Gao, Hao ;
Dong, Wen-Sheng .
ELECTROCHIMICA ACTA, 2012, 67 :187-193
[6]   MnO/reduced graphene oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage performance [J].
Mai, Y. J. ;
Zhang, D. ;
Qiao, Y. Q. ;
Gu, C. D. ;
Wang, X. L. ;
Tu, J. P. .
JOURNAL OF POWER SOURCES, 2012, 216 :201-207
[7]   Thermal stability studies of Li-ion cells and components [J].
Maleki, H ;
Deng, GP ;
Anani, A ;
Howard, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (09) :3224-3229
[8]   Thermal decomposition of Cu(NO3)2•3H2O at reduced pressures [J].
Morozov, IV ;
Znamenkov, KO ;
Korenev, YM ;
Shlyakhtin, OA .
THERMOCHIMICA ACTA, 2003, 403 (02) :173-179
[9]   LI DEINTERCALATION-INTERCALATION REACTION AND STRUCTURAL-CHANGE IN LITHIUM TRANSITION-METAL NITRIDE, LI7MNN4 [J].
NISHIJIMA, M ;
TADOKORO, N ;
TAKEDA, Y ;
IMANISHI, N ;
YAMAMOTO, O .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (11) :2966-2971
[10]   LI DEINTERCALATION AND STRUCTURAL-CHANGE IN THE LITHIUM TRANSITION-METAL NITRIDE LI3FEN2 [J].
NISHIJIMA, M ;
TAKEDA, Y ;
IMANISHI, N ;
YAMAMOTO, O ;
TAKANO, M .
JOURNAL OF SOLID STATE CHEMISTRY, 1994, 113 (01) :205-210