Oscillons and oscillating kinks in the Abelian-Higgs model

被引:18
作者
Achilleos, V. [1 ]
Diakonos, F. K. [1 ]
Frantzeskakis, D. J. [1 ]
Katsimiga, G. C. [1 ]
Maintas, X. N. [1 ]
Manousakis, E. [1 ,2 ]
Tsagkarakis, C. E. [1 ]
Tsapalis, A. [3 ]
机构
[1] Univ Athens, Dept Phys, GR-15784 Athens, Greece
[2] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA
[3] Hellen Naval Acad, Piraeus 18539, Greece
来源
PHYSICAL REVIEW D | 2013年 / 88卷 / 04期
关键词
PHASE-TRANSITIONS; BLACK-HOLES;
D O I
10.1103/PhysRevD.88.045015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the classical dynamics of the Abelian Higgs model employing an asymptotic multiscale expansion method, which uses the ratio of the Higgs to the gauge field amplitudes as a small parameter. We derive an effective nonlinear Schrodinger equation for the gauge field, and a linear equation for the scalar field containing the gauge field as a nonlinear source. This equation is used to predict the existence of oscillons and oscillating kinks for certain regimes of the ratio of the Higgs to the gauge field masses. Results of direct numerical simulations are found to be in very good agreement with the analytical findings, and show that the oscillons are robust, while kinks are unstable. It is also demonstrated that oscillons emerge spontaneously as a result of the onset of the modulational instability of plane wave solutions of the model. Connections of the results with the phenomenology of superconductors is discussed.
引用
收藏
页数:9
相关论文
共 56 条
[1]  
ABRIKOSOV AA, 1957, SOV PHYS JETP-USSR, V5, P1174
[2]   Multiscale perturbative approach to SU(2)-Higgs classical dynamics: Stability of nonlinear plane waves and bounds of the Higgs field mass [J].
Achilleos, V. ;
Diakonos, F. K. ;
Frantzeskakis, D. J. ;
Katsimiga, G. C. ;
Maintas, X. N. ;
Tsagkarakis, C. E. ;
Tsapalis, A. .
PHYSICAL REVIEW D, 2012, 85 (02)
[3]   K-oscillons: Oscillons with noncanonical kinetic terms [J].
Amin, Mustafa A. .
PHYSICAL REVIEW D, 2013, 87 (12)
[4]   Oscillons after Inflation [J].
Amin, Mustafa A. ;
Easther, Richard ;
Finkel, Hal ;
Flauger, Raphael ;
Hertzberg, Mark P. .
PHYSICAL REVIEW LETTERS, 2012, 108 (24)
[5]  
[Anonymous], 2003, Optical Solitons
[6]  
[Anonymous], 1985, ASPECTS SYMMETRY SEL, DOI DOI 10.1017/CBO9780511565045
[7]   THE SPHALERON STRIKES BACK - A RESPONSE TO OBJECTIONS TO THE SPHALERON APPROXIMATION [J].
ARNOLD, P ;
MCLERRAN, L .
PHYSICAL REVIEW D, 1988, 37 (04) :1020-1029
[8]  
Barone A., 1982, PHYS APPL JOSEPHSON
[9]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[10]  
BOGOLYUBSKII IL, 1977, JETP LETT+, V25, P107