共 50 条
LP-Liouville theorems on complete smooth metric measure spaces
被引:20
|作者:
Wu, Jia-Yong
[1
]
机构:
[1] Shanghai Maritime Univ, Dept Math, Shanghai 201306, Peoples R China
来源:
BULLETIN DES SCIENCES MATHEMATIQUES
|
2014年
/
138卷
/
04期
关键词:
Bakry-Emery Ricci curvature;
f-Laplacian;
f-heat kernel;
Harnack inequality;
Liouville theorem;
COMPLETE RIEMANNIAN-MANIFOLDS;
EMERY-RICCI TENSOR;
HEAT-EQUATION;
CURVATURE;
GEOMETRY;
KERNEL;
DIMENSION;
OPERATORS;
RIGIDITY;
SOLITONS;
D O I:
10.1016/j.bulsci.2013.07.002
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We study some function-theoretic properties on a complete smooth metric measure space (M, g,e(-f) dv) with Bakry-Emery Ricci curvature bounded from below. We derive a Moser's parabolic Harnack inequality for the f-heat equation, which leads to upper and lower Gaussian bounds on the f-heat kernel. We also prove L-P-Liouville theorems in terms of the lower bound of Bakry-Emery Ricci curvature and the bound of function f, which generalize the classical Ricci curvature case and the N-Bakry-Emery Ricci curvature case. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:510 / 539
页数:30
相关论文