A New Control Method for the Power Interface in Power Hardware-in-the-Loop Simulation to Compensate for the Time Delay

被引:20
作者
Guillo-Sansano, E. [1 ]
Roscoe, A. J. [1 ]
Jones, C. E. [1 ]
Burt, G. M. [1 ]
机构
[1] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland
来源
2014 49TH INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE (UPEC) | 2014年
关键词
Interface algorithm; power hardware-in-the-loop (PHIL) simulation; real-time systems; simulation accuracy; simulation stability; simulation time delay;
D O I
10.1109/UPEC.2014.6934618
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In an attempt to create a new control method for the power interface in PHIL simulations, a simulated PHIL simulation is carried out where the simulation and hardware part are modelled in MATLAB/Simulink along with the new control method. This power interface control is proposed to achieve high accuracy in PHIL simulation with closed-loop control for aerospace, marine or micro grid applications. Rather than analyzing the Real Time Simulator (RTS) data and controlling the interface using time-domain resonant controllers, the RTS data will be analyzed and controlled at the interface in the frequency domain, on a harmonic-by-harmonic and phase-by-phase basis. This should allow the RTS time delay to be compensated accurately, and removes the requirement to include additional components to compensate for the simulation delay into the simulated power system as it is not appropriate for power systems which have short transmission lines. This is extremely relevant for marine and micro grid scenarios where such inductive components may not be present.
引用
收藏
页数:5
相关论文
共 10 条
[1]  
Dargahi M., 2012, P IEEE INT C POW EL, P1
[2]  
de Jong E., 2012, European White Book on Real-Time Power Hardware-in-the-Loop Testing
[3]  
Hong M., 2009, POWER SYSTEM TRANSIE
[4]  
Kotsampopoulos P, 2012, IEEE IND ELEC, P4765, DOI 10.1109/IECON.2012.6389005
[5]   Interfacing Issues in Real-Time Digital Simulators IEEE Task Force on Interfacing Techniques for Simulation Tools [J].
Ren, W. ;
Sloderbeck, M. ;
Steurer, M. ;
Dinavahi, V. ;
Noda, T. ;
Filizadeh, S. ;
Chevrefils, A. R. ;
Matar, M. ;
Iravani, R. ;
Dufour, C. ;
Belanger, J. ;
Faruque, M. O. ;
Strunz, K. ;
Martinez, J. A. .
IEEE TRANSACTIONS ON POWER DELIVERY, 2011, 26 (02) :1221-1230
[6]  
Ren W., 2007, P IEEE EL SHIP TECHN
[7]   Improve the stability and the accuracy of power hardware-in-the-loop simulation by selecting appropriate interface algorithms [J].
Ren, Wei ;
Steurer, Michael ;
Baldwin, Thomas L. .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2008, 44 (04) :1286-1294
[8]   Architecture of a Network-in-the-Loop Environment for Characterizing AC Power-System Behavior [J].
Roscoe, Andrew J. ;
Mackay, Andrew ;
Burt, Graeme M. ;
McDonald, J. R. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (04) :1245-1253
[9]   A Megawatt-Scale Power Hardware-in-the-Loop Simulation Setup for Motor Drives [J].
Steurer, Michael ;
Edrington, Chris S. ;
Sloderbeck, Michael ;
Ren, Wei ;
Langston, James .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (04) :1254-1260
[10]   Stabilization of Power Hardware-in-the-Loop simulations of electric energy systems [J].
Viehweider, Alexander ;
Lauss, Georg ;
Felix, Lehfuss .
SIMULATION MODELLING PRACTICE AND THEORY, 2011, 19 (07) :1699-1708