Energy identities and blow-up analysis for solutions of the super Liouville equation

被引:15
作者
Jost, Juergen [1 ]
Wang, Guofang [2 ]
Zhou, Chunqin [3 ]
Zhu, Miaomiao [1 ]
机构
[1] Max Planck Inst Math Sci, D-04013 Leipzig, Germany
[2] Univ Magdeburg, Dept Math, D-39016 Magdeburg, Germany
[3] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2009年 / 92卷 / 03期
基金
中国国家自然科学基金;
关键词
Liouville equation; Super Liouville equation; Blow-up; Energy identity; DIRAC-HARMONIC MAPS; RIEMANN SURFACES; INEQUALITY; BOUNDARY; BEHAVIOR;
D O I
10.1016/j.matpur.2009.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the super Liouville equations, a natural generalization of the Liouville equation. We establish energy identities and a precise blow-up analysis for solutions of the super Liouville equations. (C) 2009 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:295 / 312
页数:18
相关论文
共 23 条
[1]   Exact one-point function of N=1 super-Liouville theory with boundary [J].
Ahn, C ;
Rim, C ;
Stanishkov, M .
NUCLEAR PHYSICS B, 2002, 636 (03) :497-513
[2]   Profile of blow-up solutions to Mean Field equations with singular data [J].
Bartolucci, D ;
Chen, CC ;
Lin, CS ;
Tarantello, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (7-8) :1241-1265
[3]   UNIFORM ESTIMATES AND BLOW UP BEHAVIOR FOR SOLUTIONS OF -DELTA-U = V(X)EU IN 2 DIMENSIONS [J].
BREZIS, H ;
MERLE, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (8-9) :1223-1253
[4]   Regularity theorems and energy identities for Dirac-harmonic maps [J].
Chen, Q ;
Jost, J ;
Li, JY ;
Wang, GF .
MATHEMATISCHE ZEITSCHRIFT, 2005, 251 (01) :61-84
[5]   Nonlinear Dirac equations on Riemann surfaces [J].
Chen, Qun ;
Jost, Juergen ;
Wang, Guofang .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2008, 33 (03) :253-270
[6]  
CHEN W, 2008, DISCRETE CONTIN DYN, V2, P225
[7]   A sup plus inf inequality near R=0 [J].
Chen, Wenxiong ;
Li, Congming .
ADVANCES IN MATHEMATICS, 2009, 220 (01) :219-245
[8]   CLASSIFICATION OF SOLUTIONS OF SOME NONLINEAR ELLIPTIC-EQUATIONS [J].
CHEN, WX ;
LI, CM .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (03) :615-622
[9]  
DING WY, 1996, COMMUN ANAL GEOM, V3, P543
[10]   Super-Liouville theory with boundary [J].
Fukuda, T ;
Hosomichi, K .
NUCLEAR PHYSICS B, 2002, 635 (1-2) :215-254