SOLUTIONS TO NONLINEAR RECURRENCE EQUATIONS

被引:2
|
作者
Withers, Christopher S. [1 ]
Nadarajah, Saralees [2 ]
机构
[1] Callaghan Innovat, Lower Hutt, New Zealand
[2] Univ Manchester, Manchester, England
关键词
exact solutions; logistic map; Mandelbrot equation;
D O I
10.1216/rmj.2022.52.2153
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F(z) be any function. Suppose that w is a fixed point of F(z), that is, F(w) = w. Then the recurrence equationxn+1 = F(xn)for n = 0, 1, 2, ... has a solution of the formxn(w) = w + P infinity i=1 ai 1AiF.1(w)in,where F.1(z) = d F(z)/dz. So, for each w there is a set of complex x0 such that x0(w) = x0. We assume that F(z) is analytic at w. This solution appears to be new, even for such famous examples like the logistic map and the Mandelbrot equation.
引用
收藏
页码:2153 / 2168
页数:16
相关论文
共 50 条
  • [1] MORE SOLUTIONS TO NONLINEAR RECURRENCE EQUATIONS
    Withers, Christopher S.
    Nadarajah, Saralees
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (02) : 579 - 587
  • [2] SOME SOLUTIONS TO VECTOR NONLINEAR RECURRENCE EQUATIONS
    Withers, Christopher S.
    Nadarajah, Saralees
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (03) : 969 - 981
  • [3] Solutions of linear recurrence equations
    Withers, Christopher S.
    Nadarajah, Saralees
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 : 768 - 776
  • [4] Convergence of solutions of a system of recurrence equations
    Allam, Asma
    Halim, Yacine
    Khelifa, Amira
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (02) : 1659 - 1677
  • [5] Convergence of solutions of a system of recurrence equations
    Asma Allam
    Yacine Halim
    Amira Khelifa
    Journal of Applied Mathematics and Computing, 2023, 69 : 1659 - 1677
  • [6] ASYMPTOTICS FOR SOLUTIONS OF SMOOTH RECURRENCE EQUATIONS
    MATE, A
    NEVAI, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 93 (03) : 423 - 429
  • [7] Parallel solutions of indexed recurrence equations
    BenAsher, Y
    Haber, G
    11TH INTERNATIONAL PARALLEL PROCESSING SYMPOSIUM, PROCEEDINGS, 1997, : 413 - 417
  • [8] Solutions of nonlinear difference equations
    Li, Nan
    Yang, Lianzhong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 452 (02) : 1128 - 1144
  • [9] Solutions of nonlinear Dirac equations
    Bartsch, Thomas
    Ding, Yanheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 226 (01) : 210 - 249
  • [10] SOLUTIONS OF NONLINEAR OPERATOR EQUATIONS
    LANCASTER, P
    ROKNE, JG
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1977, 8 (03) : 448 - 457