Hollow microgels squeezed in overcrowded environments

被引:47
作者
Scotti, A. [1 ]
Brugnoni, M. [1 ]
Rudov, A. A. [2 ,3 ]
Houston, J. E. [4 ]
Potemkin, I. I. [2 ,3 ,5 ]
Richtering, W. [1 ,6 ]
机构
[1] Rhein Westfal TH Aachen, Inst Phys Chem, D-52056 Aachen, Germany
[2] Lomonosov Moscow State Univ, Phys Dept, Moscow 119991, Russia
[3] DWI Leibniz Inst Interact Mat eV, D-52056 Aachen, Germany
[4] Forschungszentrum Julich, JCNS, Heinz Maier Leibnitz Zentrum MLZ, Lichtenbergstr 1, D-85748 Garching, Germany
[5] Nat Res South Ural State Univ, Chelyabinsk 454080, Russia
[6] JARA SOFT, D-52056 Aachen, Germany
基金
俄罗斯科学基金会;
关键词
ANGLE NEUTRON-SCATTERING; VOLUME-PHASE-TRANSITION; CORE-SHELL MICROGELS; POLY(N-ISOPROPYLACRYLAMIDE) MICROGELS; RELEASE; WATER; POLYDISPERSITY; SUSPENSIONS; CAPSULES; NANOGELS;
D O I
10.1063/1.5026100
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study how a cavity changes the response of hollow microgels with respect to regular ones in overcrowded environments. The structural changes of hollow poly(N-isopropylacrylamide) microgels embedded within a matrix of regular ones are probed by small-angle neutron scattering with contrast variation. The form factors of the microgels at increasing compressions are directly measured. The decrease of the cavity size with increasing concentration shows that the hollow microgels have an alternative way with respect to regular cross-linked ones to respond to the squeezing due to their neighbors. The structural changes under compression are supported by the radial density profiles obtained with computer simulations. The presence of the cavity offers to the polymer network the possibility to expand toward the center of the microgels in response to the overcrowded environment. Furthermore, upon increasing compression, a two step transition occurs: First the microgels are compressed but the internal structure is unchanged; then, further compression causes the fuzzy shell to collapse completely and reduce the size of the cavity. Computer simulations also allow studying higher compression degrees than in the experiments leading to the microgel's faceting. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 65 条
[1]   Structural studies of Poly(N-isopropylacrylamide) microgels:: Effect of SDS surfactant concentration in the microgel synthesis [J].
Andersson, Mirja ;
Maunu, Sirkka Liisa .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2006, 44 (23) :3305-3314
[2]   Swelling of a Responsive Network within Different Constraints in Multi-Thermosensitive Microgels [J].
Brugnoni, Monia ;
Scotti, Andrea ;
Rudov, Andrey A. ;
Gelissen, Arjan P. H. ;
Caumanns, Tobias ;
Radulescu, Aurel ;
Eckert, Thomas ;
Pich, Andrij ;
Potemkin, Igor I. ;
Richtering, Walter .
MACROMOLECULES, 2018, 51 (07) :2662-2671
[3]  
BURCHARD W, 1989, PROG COLL POL SCI S, V80, P151
[4]   Shear Banding of Colloidal Glasses: Observation of a Dynamic First-Order Transition [J].
Chikkadi, V. ;
Miedema, D. M. ;
Dang, M. T. ;
Nienhuis, B. ;
Schall, P. .
PHYSICAL REVIEW LETTERS, 2014, 113 (20)
[5]   Jamming and overpacking fuzzy microgels: Deformation, interpenetration, and compression [J].
Conley, Gaurasundar M. ;
Aebischer, Philippe ;
Nojd, Sofi ;
Schurtenberger, Peter ;
Scheffold, Frank .
SCIENCE ADVANCES, 2017, 3 (10)
[6]   A simple, direct derivation and proof of the validity of the SLLOD equations of motion for generalized homogeneous flows [J].
Daivis, PJ ;
Todd, BD .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (19)
[7]   Deswelling and deformation of microgels in concentrated packings [J].
de Aguiar, I. Bouhid ;
van de laar, T. ;
Meireles, M. ;
Bouchoux, A. ;
Sprakel, J. ;
Schroen, K. .
SCIENTIFIC REPORTS, 2017, 7
[8]   Dynamic assembly of ultrasoft colloidal networks enables cell invasion within restrictive fibrillar polymers [J].
Douglas, Alison M. ;
Fragkopoulos, Alexandros A. ;
Gaines, Michelle K. ;
Lyon, L. Andrew ;
Fernandez-Nieves, Alberto ;
Barker, Thomas H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (05) :885-890
[9]   Core-Shell-Shell and Hollow Double-Shell Microgels with Advanced Temperature Responsiveness [J].
Dubbert, Janine ;
Nothdurft, Katja ;
Karg, Matthias ;
Richtering, Walter .
MACROMOLECULAR RAPID COMMUNICATIONS, 2015, 36 (02) :159-164
[10]   How Hollow Are Thermoresponsive Hollow Nanogels? [J].
Dubbert, Janine ;
Honold, Tobias ;
Pedersen, Jan Skov ;
Radulescu, Aurel ;
Drechsler, Markus ;
Karg, Matthias ;
Richtering, Walter .
MACROMOLECULES, 2014, 47 (24) :8700-8708