Microbial Base Editing: A Powerful Emerging Technology for Microbial Genome Engineering

被引:53
作者
Wang, Yu [1 ]
Liu, Ye [1 ]
Zheng, Ping [1 ]
Sun, Jibin [1 ]
Wang, Meng [1 ]
机构
[1] Chinese Acad Sci, Tianjin Inst Ind Biotechnol, Key Lab Syst Microbial Biotechnol, Tianjin 300308, Peoples R China
基金
中国国家自然科学基金;
关键词
RANGE; DNA;
D O I
10.1016/j.tibtech.2020.06.010
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Genome engineering is crucial for answering fundamental questions about, and exploring practical applications of, microorganisms. Various microbial genome-engineering tools, including CRISPR/Cas-enhanced homologous recombination (HR), have been developed, with ever-improving simplicity, efficiency, and applicability. Recently, a powerful emerging technology based on CRISPR/Cas-nucleobase deaminase fusions, known as base editing, opened new avenues for microbial genome engineering. Base editing enables nucleotide transition without inducing lethal double-stranded (ds)DNA cleavage, adding foreign donor DNA, or depending on inefficient HR. Here, we review ongoing efforts to develop and apply base editing to engineer industrially and clinically relevant microorganisms. We also summarize bioinformatics tools that would greatly facilitate guide (g)RNA design and sequencing data analysis and discuss the future challenges and prospects associated with this technology.
引用
收藏
页码:165 / 180
页数:16
相关论文
共 81 条
[1]   Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering [J].
Arazoe, Takayuki ;
Kondo, Akihiko ;
Nishida, Keiji .
BIOTECHNOLOGY JOURNAL, 2018, 13 (09)
[2]   Methodologies to increase the transformation efficiencies and the range of bacteria that can be transformed [J].
Aune, Trond Erik Vee ;
Aachmann, Finn Lillelund .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 85 (05) :1301-1313
[3]   Multiplex Gene Disruption by Targeted Base Editing of Yarrowia lipolytica Genome Using Cytidine Deaminase Combined with the CRISPR/Cas9 System [J].
Bae, Sang-Jeong ;
Park, Beom Gi ;
Kim, Byung-Gee ;
Hahn, Ji-Sook .
BIOTECHNOLOGY JOURNAL, 2020, 15 (01)
[4]   Deaminase-mediated multiplex genome editing in Escherichia coli [J].
Banno, Satomi ;
Nishida, Keiji ;
Arazoe, Takayuki ;
Mitsunobu, Hitoshi ;
Kondo, Akihiko .
NATURE MICROBIOLOGY, 2018, 3 (04) :423-429
[5]   Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products [J].
Becker, Judith ;
Rohles, Christina Maria ;
Wittmann, Christoph .
METABOLIC ENGINEERING, 2018, 50 :122-141
[6]   CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons [J].
Billon, Pierre ;
Bryant, Eric E. ;
Joseph, Sarah A. ;
Nambiar, Tarun S. ;
Hayward, Samuel B. ;
Rothstein, Rodney ;
Ciccia, Alberto .
MOLECULAR CELL, 2017, 67 (06) :1068-+
[7]   Engineered integrative and conjugative elements for efficient and inducible DNA transfer to undomesticated bacteria [J].
Brophy, Jennifer A. N. ;
Triassi, Alexander J. ;
Adams, Bryn L. ;
Renberg, Rebecca L. ;
Stratis-Cullum, Dimitra N. ;
Grossman, Alan D. ;
Voigt, Christopher A. .
NATURE MICROBIOLOGY, 2018, 3 (09) :1043-1053
[8]   AlleleProfileR: A versatile tool to identify and profile sequence variants in edited genomes [J].
Bruyneel, Arne A. N. ;
Colas, Alexandre R. ;
Karakikes, Ioannis ;
Mercola, Mark .
PLOS ONE, 2019, 14 (12)
[9]   Minimal PAM specificity of a highly similar SpCas9 ortholog [J].
Chatterjee, Pranam ;
Jakimo, Noah ;
Jacobson, Joseph M. .
SCIENCE ADVANCES, 2018, 4 (10)
[10]   CRISPR/Cas9-based Genome Editing in Pseudomonas aeruginosa and Cytidine Deaminase-Mediated Base Editing in Pseudomonas Species [J].
Chen, Weizhong ;
Zhang, Ya ;
Zhang, Yifei ;
Pi, Yishuang ;
Gu, Tongnian ;
Song, Liqiang ;
Wang, Yu ;
Ji, Quanjiang .
ISCIENCE, 2018, 6 :222-+