COMMUTATORS OF CONVOLUTION TYPE OPERATORS ON SOME BANACH FUNCTION SPACES

被引:4
作者
Karlovich, Alexei Yu. [1 ,2 ]
机构
[1] Univ Nova Lisboa, CMA, Fac Ciencias & Tecnol, P-2829516 Quinta Da Torre, Caparica, Portugal
[2] Univ Nova Lisboa, Dept Matemat, Fac Ciencias & Tecnol, P-2829516 Quinta Da Torre, Caparica, Portugal
关键词
Fourier convolution operator; commutator; piecewise quasicontinuous function; piecewise slowly oscillating multiplier; Banach function space; rearrangement invariant space; variable Lebesgue space; WEIGHTED NORM INEQUALITIES; ALGEBRAS;
D O I
10.15352/afa/06-4-191
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the boundedness of Fourier convolution operators W-0 (b) and the compactness of commutators of W-0 (b) with multiplication operators al on some Banach function spaces X (14) for certain classes of piecewise quasicontinuous functions a is an element of PQC and piecewise slowly oscillating Fourier multipliers b is an element of PSO degrees(X,1). We suppose that X( I) is a separable rearrangement-invariant space with nontrivial Boyd indices or a reflexive variable Lebesgue space, in which the Hardy Littlewood maximal operator is bounded. Our results complement those of Isaac De La Cruz Rodriguez, Yuri Karlovich, and Ivan Loreto Hernandez obtained for Lebesgue spaces with Muckenhoupt weights.
引用
收藏
页码:191 / 205
页数:15
相关论文
共 19 条
  • [1] [Anonymous], 1997, PROGR MATH
  • [2] Bennett C., 1988, INTERPOLATION OPERAT
  • [3] Bottcher A., 2002, CONVOLUTION OPERATOR
  • [5] CALDERON AP, 1966, STUD MATH, V26, P273
  • [6] Weighted norm inequalities for the maximal operator on variable Lebesgue spaces
    Cruz-Uribe, D.
    Fiorenza, A.
    Neugebauer, C. J.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) : 744 - 760
  • [7] CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
  • [8] De la Cruz-Rodriguez I., 2014, COMMUN MATH ANAL, V17, P131
  • [9] Lebesgue and Sobolev Spaces with Variable Exponents
    Diening, Lars
    Harjulehto, Petteri
    Hasto, Peter
    Ruzicka, Michael
    [J]. LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 : 1 - +
  • [10] Duduchava R., 1979, INTEGRAL EQUATIONS F