On the asymptotic analysis of kinetic models towards the compressible Euler and acoustic equations

被引:21
作者
Bellouquid, A [1 ]
机构
[1] Politecn Torino, Dept Math, I-10129 Turin, Italy
关键词
kinetics models; Boltzmann equation; BGK model; compressible Euler; acoustic limit; asymptotic theory;
D O I
10.1142/S0218202504003477
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the analysis of the asymptotic limit for models of the mathematical kinetic theory to the nonlinearized compressible Euler equations or to the acoustic equations when the Knudsen number epsilon tends to zero. Existence and uniqueness theorems are proven for analytic initial fluctuations on the time interval independent of the small parameter epsilon. As epsilon tends to zero, the solution of kinetics models converges strongly to the Maxwellian whose fluid-dynamics parameters solve the Euler and the acoustic systems. The general results are specifically applied to the analysis of the Boltzmann and BGK equations.
引用
收藏
页码:853 / 882
页数:30
相关论文
共 33 条
[31]   The gyrokinetic approximation for the Vlasov-Poisson system [J].
Saint-Raymond, L .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2000, 10 (09) :1305-1332
[32]   FORMATION OF SINGULARITIES IN 3-DIMENSIONAL COMPRESSIBLE FLUIDS [J].
SIDERIS, TC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 101 (04) :475-485
[33]  
Ukai S., 1983, HOKKAIDO MATH J, V3, P311, DOI DOI 10.14492/H0KMJ/1470081009)