Analysis of Optimal Control Problems of Semilinear Elliptic Equations by BV-Functions

被引:5
作者
Casas, Eduardo [1 ]
Kunisch, Karl [2 ]
机构
[1] Univ Cantabria, Dept Matemat Aplicada & Ciencias Comp, ETSI Ind & Telecomunicac, E-39005 Santander, Spain
[2] Karl Franzens Univ Graz, Inst Math & Sci Comp, Heinrichstr 36, A-8010 Graz, Austria
基金
欧盟地平线“2020”;
关键词
Optimal control; Bounded variation functions; Sparsity; First and second order optimality conditions; Semilinear elliptic equations;
D O I
10.1007/s11228-018-0482-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Optimal control problems for semilinear elliptic equations with control costs in the space of bounded variations are analysed. BV-based optimal controls favor piecewise constant, and hence 'simple' controls, with few jumps. Existence of optimal controls, necessary and sufficient optimality conditions of first and second order are analysed. Special attention is paid on the effect of the choice of the vector norm in the definition of the BV-seminorm for the optimal primal and adjoined variables.
引用
收藏
页码:355 / 379
页数:25
相关论文
共 26 条
[1]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[2]  
[Anonymous], 1965, ANN I FOURIER, DOI DOI 10.5802/AIF.204
[3]  
[Anonymous], 1984, MINIMAL SURFACES FUN
[4]  
[Anonymous], 1973, FUNCTIONAL ANAL
[5]  
[Anonymous], 2010, GRADE STUD MATH
[6]  
Bredies K, POINTWISE CHARACTERI
[7]  
Brezis H, 2010, FUNCTIONAL ANAL SOBO, DOI DOI 10.1007/978-0-387-70914-7
[8]   Regularization by functions of bounded variation and applications to image enhancement [J].
Casas, E ;
Kunisch, K ;
Pola, C .
APPLIED MATHEMATICS AND OPTIMIZATION, 1999, 40 (02) :229-257
[9]  
Casas E., 2015, Jahresber. Dtsch. Math.-Ver, P3, DOI DOI 10.1365/S13291-014-0109-3
[10]   OPTIMAL CONTROL OF SEMILINEAR PARABOLIC EQUATIONS BY BV-FUNCTIONS [J].
Casas, Eduardo ;
Kruse, Florian ;
Kunisch, Karl .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2017, 55 (03) :1752-1788