Efficient solar hydrogen generation in microgravity environment

被引:50
作者
Brinkert, Katharina [1 ,2 ]
Richter, Matthias H. [1 ,3 ]
Akay, Oemer [4 ]
Liedtke, Janine [2 ]
Giersig, Michael [4 ,5 ]
Fountaine, Katherine T. [6 ,7 ]
Lewerenz, Hans-Joachim [8 ,9 ]
机构
[1] CALTECH, Div Chem & Chem Engn, 1200 E Calif Blvd, Pasadena, CA 91125 USA
[2] European Space Agcy, Adv Concepts Team, Estec, Keplerlaan 1, NL-2200 AG Noordwijk, Netherlands
[3] Brandenburg Tech Univ Cottbus, Appl Phys & Sensors, K Wachsmann Allee 17, D-03046 Cottbus, Germany
[4] Free Univ Berlin, Dept Phys, Arnimallee 14, D-14195 Berlin, Germany
[5] South China Normal Univ, Int Acad Optoelect Zhaoqing, Guangzhou 526238, Guangdong, Peoples R China
[6] CALTECH, Resnick Sustainabil Inst, Pasadena, CA 91125 USA
[7] Northrop Grumman Corp, NG Next, One Space Pk, Redondo Beach, CA 90278 USA
[8] CALTECH, Div Engn & Appl Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA
[9] CALTECH, Joint Ctr Artificial Photosynth, 1200 E Calif Blvd, Pasadena, CA 91125 USA
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
关键词
WATER ELECTROLYSIS; CONVERSION;
D O I
10.1038/s41467-018-04844-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Long-term space missions require extra-terrestrial production of storable, renewable energy. Hydrogen is ascribed a crucial role for transportation, electrical power and oxygen generation. We demonstrate in a series of drop tower experiments that efficient direct hydrogen production can be realized photoelectrochemically in microgravity environment, providing an alternative route to existing life support technologies for space travel. The photoelectrochemical cell consists of an integrated catalyst-functionalized semiconductor system that generates hydrogen with current densities >15 mA/cm(2) in the absence of buoyancy. Conditions are described adverting the resulting formation of ion transport blocking froth layers on the photoelectrodes. The current limiting factors were overcome by controlling the micro-and nanotopography of the Rh electrocatalyst using shadow nanosphere lithography. The behaviour of the applied system in terrestrial and microgravity environment is simulated using a kinetic transport model. Differences observed for varied catalyst topography are elucidated, enabling future photoelectrode designs for use in reduced gravity environments.
引用
收藏
页数:8
相关论文
共 28 条
  • [1] From natural to artificial photosynthesis
    Barber, James
    Tran, Phong D.
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2013, 10 (81)
  • [2] Cheng W.-H., 2017, Monolithic photoelectrochemical device for 19% direct water splitting
  • [3] Experimental investigation of two-phase electrolysis processes: comparison with or without gravity
    Derhoumi, Zine
    Mandin, Philippe
    Roustan, Herve
    Wuethrich, Rolf
    [J]. JOURNAL OF APPLIED ELECTROCHEMISTRY, 2013, 43 (12) : 1145 - 1161
  • [4] Efficiency limits for photoelectrochemical water-splitting
    Fountaine, Katherine T.
    Lewerenz, Hans Joachim
    Atwater, Harry A.
    [J]. Nature Communications, 2016, 7
  • [5] Interplay of light transmission and catalytic exchange current in photoelectrochemical systems
    Fountaine, Katherine T.
    Lewerenz, Hans J.
    Atwater, Harry A.
    [J]. APPLIED PHYSICS LETTERS, 2014, 105 (17)
  • [6] Fukunaka Y., 2010, SPACE UTIL RES, V27, P227
  • [7] Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems
    Haussener, Sophia
    Hu, Shu
    Xiang, Chengxiang
    Weber, Adam Z.
    Lewis, Nathan S.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (12) : 3605 - 3618
  • [8] EFFICIENT SOLAR TO CHEMICAL CONVERSION - 12-PERCENT EFFICIENT PHOTOASSISTED ELECTROLYSIS IN THE [P-TYPE INP(RU)] - HCL-KCL-PT(RH) CELL
    HELLER, A
    VADIMSKY, RG
    [J]. PHYSICAL REVIEW LETTERS, 1981, 46 (17) : 1153 - 1156
  • [9] Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles
    Jensen, TR
    Malinsky, MD
    Haynes, CL
    Van Duyne, RP
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (45) : 10549 - 10556
  • [10] A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting
    Khaselev, O
    Turner, JA
    [J]. SCIENCE, 1998, 280 (5362) : 425 - 427