neural network rule extraction;
Wisconsin breast cancer diagnosis;
data pre-processing;
attribute selection;
D O I:
10.1016/S0933-3657(99)00041-X
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
In our previous work, we have presented an algorithm that extracts classification rules from trained neural networks and discussed its application to breast cancer diagnosis. In this paper, we describe how the accuracy of the networks and the accuracy of the rules extracted from them can be improved by a simple pre-processing of the data. Data pre-processing involves selecting the relevant input attributes and removing those samples with missing attribute values. The rules generated by our neural network rule extraction algorithm are more concise and accurate than those generated by other rule generating methods reported in the literature. (C) 2000 Elsevier Science B.V. All rights reserved.