Comparison of whole house heat loss test methods under controlled conditions in six distinct retrofit scenarios

被引:30
作者
Alzetto, Florent [1 ]
Farmer, David [2 ]
Fitton, Richard [3 ]
Hughes, Tara [3 ]
Swan, Will [3 ]
机构
[1] St Gobain Res, 39 Quai Lucien Lefranc, F-93303 Aubervilliers, France
[2] Leeds Beckett Univ, Leeds Sustainabil Inst, Ctr Built Environm, BPA223 Broadcasting Pl,Woodhouse Lane, Leeds LS2 9EN, W Yorkshire, England
[3] Univ Salford, Energy House Test Facil, Coll Sci & Technol, G16a,Cockcroft Bldg, Salford M5 4WT, Lancs, England
关键词
Coheating; Building thermal performance; Performance gap; Thermal performance methods; HLC; QUB; Retrofit; PERFORMANCE; STATE; BUILDINGS;
D O I
10.1016/j.enbuild.2018.03.024
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The accurate assessment of buildings to assess their performance across a range of parameters is an essential part of understanding both new and retrofit buildings. The growing understanding of the performance gap in terms of its assessment and characterisation relies on effective methods of analysis. Here, we evaluate an experimental whole house method, known as QUB. As with many whole building approaches the method establishes heat loss through transmission and ventilation losses. This study compares QUB against an alternative, established, whole house test known as coheating. It was applied in a whole house test facility under controlled conditions. The test property, a solid wall pre-1919 UK archetype, was retrofit using a set of commercially available products and then the retrofit was removed in stages. At each of these stages a QUB test, which commonly takes one night, and coheating test, which can take few weeks, were applied. The objective of the study was to provide a comparison between the new method and more established method in terms of accuracy. The two methods showed close agreement in terms of results, suggesting that the quicker test has great potential as a more practical and economic test. There were higher levels of uncertainty with the QUB method due to shorter measurement periods. The lack of full boundary conditions within the test facility should be considered a limitation in applying the findings directly to the field. However, this study indicates the potential for QUB in validating performance, warranting further investigation. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 41
页数:7
相关论文
共 29 条
[1]   Co-heating test: A state-of-the-art [J].
Bauwens, Geert ;
Roels, Staf .
ENERGY AND BUILDINGS, 2014, 82 :163-172
[2]  
Bell M, 2010, WHOLE HOUSE HEAT LOS
[3]  
Boardman B., 2006, CHALLENGE EXISTING U
[4]  
Bouchie R., 2015, FP72013NMPENVEEB6091
[5]  
European Environment Agency, 2009, EN EFF EN CONS HOUS
[6]  
Everett R., 1985, TECHNICAL REPORT
[7]   Measuring thermal performance in steady-state conditions at each stage of a full fabric retrofit to a solid wall dwelling [J].
Farmer, David ;
Gorse, Chris ;
Swan, William ;
Fitton, Richard ;
Brooke-Peat, Matthew ;
Miles-Shenton, Dominic ;
Johnston, David .
ENERGY AND BUILDINGS, 2017, 156 :404-414
[8]   Obtaining the heat loss coefficient of a dwelling using its heating system (integrated coheating) [J].
Farmer, David ;
Johnston, David ;
Miles-Shenton, Dominic .
ENERGY AND BUILDINGS, 2016, 117 :1-10
[9]   PRISM - AN INTRODUCTION [J].
FELS, MF .
ENERGY AND BUILDINGS, 1986, 9 (1-2) :5-18
[10]  
Fitton R., 2013, 2013 ANN 58 4 EXP M