An Adaptive Projected Subgradient Approach to Learning in Diffusion Networks

被引:50
作者
Cavalcante, Renato L. G. [1 ]
Yamada, Isao [2 ]
Mulgrew, Bernard [1 ]
机构
[1] Univ Edinburgh, Digital Commun Res Inst, Joint Res Inst Signal & Image Proc, Edinburgh EH9 3JL, Midlothian, Scotland
[2] Tokyo Inst Technol, Dept Commun & Integrated Syst, Sakaniwa & Yamada Lab, Tokyo 1528552, Japan
关键词
Adaptive filtering; adaptive projected subgradient method; consensus; convex optimization; diffusion networks; distributed processing; SUPPRESSION; ITERATIONS; CONSENSUS; SYSTEMS; FILTERS; SQUARES; SET;
D O I
10.1109/TSP.2009.2018648
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present an algorithm that minimizes asymptotically a sequence of nonnegative convex functions over diffusion networks. In the proposed algorithm, at each iteration the nodes in the network have only partial information of the cost function, but they are able to achieve consensus on a possible minimizer asymptotically. To account for possible node failures, position changes, and/or reachability problems (because of moving obstacles, jammers, etc.), the algorithm can cope with changing network topologies and cost functions, a desirable feature in online algorithms where information arrives sequentially. Many projection-based algorithms can be straightforwardly extended to (probabilistic) diffusion networks with the proposed scheme. The system identification problem in distributed networks is given as one example of a possible application.
引用
收藏
页码:2762 / 2774
页数:13
相关论文
共 46 条
[1]   A survey on sensor networks [J].
Akyildiz, IF ;
Su, WL ;
Sankarasubramaniam, Y ;
Cayirci, E .
IEEE COMMUNICATIONS MAGAZINE, 2002, 40 (08) :102-114
[2]  
[Anonymous], 1985, Springer Series in Computational Mathematics
[3]  
[Anonymous], IEEE T AUTO IN PRESS
[4]  
[Anonymous], J IEICE
[5]   Convergence analysis of the binormalized data-reusing LMS algorithm [J].
Apolinario, J ;
Campos, MLR ;
Diniz, PSR .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (11) :3235-3242
[6]   An affine combination of two LMS adaptive filters - Transient mean-square analysis [J].
Bershad, Neil J. ;
Bennudez, Jose Carlos M. ;
Toumeret, Jean-Yves .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (05) :1853-1864
[7]  
Bertsekas D., 2003, Convex Analysis and Optimization
[8]  
Bertsekas D. P., 1997, Parallel and Distributed Computation: Numerical Methods
[9]   A convergent incremental gradient method with a constant step size [J].
Blatt, Doron ;
Hero, Alfred O. ;
Gauchman, Hillel .
SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (01) :29-51
[10]   Energy-based sensor network source localization via projection onto convex sets [J].
Blatt, Doron ;
Hero, Alfred O., III .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (09) :3614-3619