Using SVD and SVM methods for selection, classification, clustering and modeling of DNA microarray data

被引:30
作者
Simek, K
Fujarewicz, K
Swierniak, A
Kimmel, M
Jarzab, B
Wiench, M
Rzeszowska, J
机构
[1] Silesian Tech Univ, Inst Automat Control, PL-44101 Gliwice, Poland
[2] Rice Univ, Dept Stat, Houston, TX 77251 USA
[3] Maria Sklodowska Curie Mem Inst Oncol, Ctr Oncol, PL-44101 Gliwice, Poland
关键词
DNA microarrays; singular value decomposition; support vector machines; clustering; data mining; feature selection; modeling of gene expression data;
D O I
10.1016/j.engappai.2004.04.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
DNA microarray technology is the latest and the most advanced too] for parallel measuring of the activity and interactions of thousands of genes. This modern technology promises new insight into mechanisms of living systems, for example only two high-density oligonucleotide microarrays are sufficient to inspect the whole human genome. However, it provides unprecedented amount of data that require application of advanced computational methods. The appropriate choice of data analysis technique depends both on data and on goals of an experiment. In this paper we focus on two promising methods: singular value decomposition and support vector machines. We discuss the possibility of application of these methods for different purposes; particularly for clustering, classification, feature selection and modeling of dynamics of gene expression. We use for testing presented approaches existing data sets, which are widely available via Internet, and one new tumor/normal thyroid microarray data set. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:417 / 427
页数:11
相关论文
共 27 条
[1]   Processing and modeling genome-wide expression data using singular value decomposition [J].
Alter, O ;
Brown, PO ;
Botstein, D .
MICROARRAYS: OPTICAL TECHNOLOGIES AND INFORMATICS, 2001, 4266 :171-186
[2]  
[Anonymous], 1996, MATLAB OPTIMIZATION
[3]  
BERRAR EP, 2003, PRACTICAL APPROACH M
[4]  
Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482
[5]  
Cristianini N., 2000, Intelligent Data Analysis: An Introduction, DOI 10.1017/CBO9780511801389
[6]   Expression profiling using cDNA microarrays [J].
Duggan, DJ ;
Bittner, M ;
Chen, YD ;
Meltzer, P ;
Trent, JM .
NATURE GENETICS, 1999, 21 (Suppl 1) :10-14
[7]  
Everitt B. S, 2001, APPL MULTIVARIATE DA
[8]  
FUJAREWICZ K, 2003, INT J APPL MATH COMP, V13, P101
[9]  
FUJAREWICZ K, 2002, J BIOL SYST, V10, P1
[10]  
Golub G.H., 2013, Matrix Computations, V4th