The Stability and Convergence of Fully Discrete Galerkin-Galerkin FEMs for Porous Medium Flows

被引:18
作者
Li, Buyang [1 ]
Wang, Jilu [2 ]
Sun, Weiwei [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210008, Jiangsu, Peoples R China
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Unconditional stability; optimal error estimate; Galerkin FEMs; incompressible miscible flows; FINITE-ELEMENT-METHOD; NAVIER-STOKES EQUATIONS; ORDER ERROR ESTIMATE; MISCIBLE DISPLACEMENT; MFEM APPROXIMATIONS; MIXED METHOD; TIME; TRANSPORT; PRESSURE; SCHEME;
D O I
10.4208/cicp.080313.051213s
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper is concerned with the unconditional stability and error estimates of fully discrete Galerkin-Galerkin FEMs for the equations of incompressible miscible flows in porous media. We prove that the optimal L-2 error estimates hold without any time-step (convergence) conditions, while all previous works require certain time-step restrictions. Theoretical analysis is based on a splitting of the error into two parts: the error from the time discretization of the PDEs and the error from the finite element discretization of the corresponding time-discrete PDEs, which was proposed in our previous work [26, 27]. Numerical results for both two and three-dimensional flow models are presented to confirm our theoretical analysis.
引用
收藏
页码:1141 / 1158
页数:18
相关论文
共 53 条
[11]  
Chen Z., 1995, Adv. Math. Sci. Appl., V5, P363
[12]   Mathematical analysis for reservoir models [J].
Chen, ZX ;
Ewing, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (02) :431-453
[13]  
DOUGLAS J, 1983, RAIRO-ANAL NUMER-NUM, V17, P17
[14]  
Douglas J., 1997, Comput. Geosci, V1, P155, DOI DOI 10.1023/A:1011565228179
[15]  
DOUGLAS J, 1980, COMPUTATIONAL METHOD
[17]  
ELLIOTT CM, 1995, MATH COMPUT, V64, P1433, DOI 10.1090/S0025-5718-1995-1308451-4
[18]   Approximation of time-dependent viscoelastic fluid flow: SUPG approximation [J].
Ervin, VJ ;
Miles, WW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (02) :457-486
[19]   GALERKIN METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS IN POROUS-MEDIA [J].
EWING, RE ;
WHEELER, MF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (03) :351-365
[20]   CONVERGENCE ANALYSIS OF AN APPROXIMATION OF MISCIBLE DISPLACEMENT IN POROUS-MEDIA BY MIXED FINITE-ELEMENTS AND A MODIFIED METHOD OF CHARACTERISTICS [J].
EWING, RE ;
RUSSELL, TF ;
WHEELER, MF .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 47 (1-2) :73-92