Phase detection algorithm using step lengths deviation errors and Hough transform in phase-shifting interferometry

被引:1
|
作者
Ramirez-delreal, Tania A. [1 ]
Mora-Gonzalez, Miguel [2 ]
Munoz-Maciel, Jesus [2 ]
Casillas-Rodriguez, Francisco J. [2 ]
Paz, Marco A. [3 ]
机构
[1] CONACyT CentroGeo Ctr Invest Ciencias Informac Ge, Aguascalientes, Aguascalientes, Mexico
[2] Univ Guadalajara, Ctr Univ los Lagos, Lagos De Moreno, Jalisco, Mexico
[3] Univ Autonoma Guadalajara, Posgrad Studies Comp, Zapopan, Jalisco, Mexico
关键词
phase-shifting; Radon transform; Hough transform; interferometry; EXTRACTION; INTERFEROGRAMS;
D O I
10.1117/1.OE.59.7.074105
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In phase-shifting interferometry (PSI), a set of interferograms with a known phase step displacement is necessary, but incorrect calibration deviation errors can occur in shifter devices. We present a method to recover the phase distribution in the presence of this deviation error through the widely used PSI technique. By applying the radon transform as a profile measurement, our algorithm first estimates the deviations in the phase steps, then these calculations are used to obtain the wrapped phase using the Hough transform as an estimation of coefficients in sinusoidal patterns. Simulation and experimental results have shown good performance. The results reveal that this algorithm is able to detect and decrease the phase error due to miscalibrations. (C) 2020 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Analysis and correction of object wavefront reconstruction errors in two-step phase-shifting interferometry
    Xu Xian-Feng
    Han Li-Li
    Yuan Hong-Guang
    ACTA PHYSICA SINICA, 2011, 60 (08)
  • [22] Phase Measurement of RF Devices Using Phase-Shifting Interferometry
    Will, Karl
    Omar, Abbas
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2008, 56 (11) : 2642 - 2647
  • [23] Joint least-squares algorithm correcting phase-shift errors and detector nonlinearity simultaneously in phase-shifting interferometry
    Zhu, Huijie
    Guo, Hongwei
    APPLIED OPTICS, 2023, 62 (07) : 1829 - 1839
  • [24] Multi-step phase-shifting algorithms insensitive to linear phase shift errors
    Novak, Jiri
    Novak, Pavel
    Miks, Antonin
    OPTICS COMMUNICATIONS, 2008, 281 (21) : 5302 - 5309
  • [25] Real-time phase-step estimation in phase-shifting interferometry
    Langoju, Rajesh
    Patil, Abhijit
    Rastogi, Pramod
    OPTICAL ENGINEERING, 2007, 46 (03)
  • [26] Statistical phase-shifting step estimation algorithm based on the continuous wavelet transform for high-resolution interferometry metrology
    Chen, Bicheng
    Basaran, Cemal
    APPLIED OPTICS, 2011, 50 (04) : 586 - 593
  • [27] Statistical estimation method for phase shift in generalized two-step phase-shifting interferometry
    Xu, Yuanyuan
    Wang, Yawei
    Ji, Ying
    Jin, Weifeng
    Han, Hao
    Zhu, Qiong
    JOURNAL OF MODERN OPTICS, 2017, 64 (05) : 484 - 490
  • [28] Single step method for two-frame phase-shifting interferometry with unknown phase shift
    Lopez-Alvarez, Yadira F.
    Munoz-Maciel, Jesus
    Pena-Lecona, Francisco G.
    Duran-Ramirez, Victor M.
    JOURNAL OF OPTICS, 2022, 24 (04)
  • [29] Phase-shifting interferometry with precise phase steps
    Wang, ZB
    BryanstonCross, PJ
    Davies, RN
    SPECIFICATION, PRODUCTION, AND TESTING OF OPTICAL COMPONENTS AND SYSTEMS, 1996, 2775 : 452 - 459
  • [30] Phase-shifting interferometry by a similar matrix 1-norm algorithm
    Xu, Yuanyuan
    Wang, Yawei
    Ji, Ying
    Jin, Weifeng
    Han, Hao
    Zhu, Qiong
    Xu, Xiaoqing
    JOURNAL OF MODERN OPTICS, 2017, 64 (15) : 1479 - 1486