A structure-based simulation approach for electron paramagnetic resonance spectra using molecular and stochastic dynamics simulations

被引:65
作者
Beier, Christian [1 ]
Steinhoff, Heinz-Jurgen [1 ]
机构
[1] Univ Osnabruck, Fachbereich Phys, Osnabruck, Germany
关键词
D O I
10.1529/biophysj.105.080051
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Electron paramagnetic resonance (EPR) spectroscopy using site-directed spin-labeling is an appropriate technique to analyze the structure and dynamics of flexible protein regions as well as protein-protein interactions under native conditions. The analysis of a set of protein mutants with consecutive spin-label positions leads to the identification of secondary and tertiary structure elements. In the first place, continuous-wave EPR spectra reflect the motional freedom of the spin-label specifically linked to a desired site within the protein. EPR spectra calculations based on molecular dynamics ( MD) and stochastic dynamics simulations facilitate verification or refinement of predicted computer-aided models of local protein conformations. The presented spectra simulation algorithm implies a specialized in vacuo MD simulation at 600 K with additional restrictions to sample the entire accessible space of the bound spin-label without large temporal effort. It is shown that the distribution of spin-label orientations obtained from such MD simulations at 600 K agrees well with the extrapolated motion behavior during a long timescale MD at 300 K with explicit water. The following potential-dependent stochastic dynamics simulation combines the MD data about the site-specific orientation probabilities of the spin-label with a realistic rotational diffusion coefficient yielding a set of trajectories, each more than 700 ns long, essential to calculate the EPR spectrum. Analyses of a structural model of the loop between helices E and F of bacteriorhodopsin are illustrated to demonstrate the applicability and potentials of the reported simulation approach. Furthermore, effects on the motional freedom of bound spin-labels induced by solubilization of bacteriorhodopsin with Triton X-100 are examined.
引用
收藏
页码:2647 / 2664
页数:18
相关论文
共 54 条
[1]   Assessment of a combined QM/MM approach for the study of large nitroxide systems in vacuo and in condensed phases [J].
Barone, V ;
Bencini, A ;
Cossi, M ;
Di Matteo, A ;
Mattesini, M ;
Totti, F .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (28) :7069-7078
[2]   Protein, lipid and water organization in bacteriorhodopsin crystals:: a molecular view of the purple membrana at 1.9 Å resolution [J].
Belrhali, H ;
Nollert, P ;
Royant, A ;
Menzel, C ;
Rosenbusch, JP ;
Landau, EM ;
Pebay-Peyroula, E .
STRUCTURE, 1999, 7 (08) :909-917
[3]  
Berliner L. J., 1976, SPIN LABELING THEORY, DOI [DOI 10.1016/B978-0-12-092350-2.50008-4, 10.1016/B978-0-12-092350-2.50008-4]
[4]   A NOVEL REVERSIBLE THIOL-SPECIFIC SPIN LABEL - PAPAIN ACTIVE-SITE LABELING AND INHIBITION [J].
BERLINER, LJ ;
GRUNWALD, J ;
HANKOVSZKY, HO ;
HIDEG, K .
ANALYTICAL BIOCHEMISTRY, 1982, 119 (02) :450-455
[6]   Algorithms for Brownian dynamics simulation [J].
Branka, AC ;
Heyes, DM .
PHYSICAL REVIEW E, 1998, 58 (02) :2611-2615
[7]  
BURLEY SK, 1988, ADV PROTEIN CHEM, V39, P125
[8]   SITE-SPECIFIC INCORPORATION OF BIOPHYSICAL PROBES INTO PROTEINS [J].
CORNISH, VW ;
BENSON, DR ;
ALTENBACH, CA ;
HIDEG, K ;
HUBBELL, WL ;
SCHULTZ, PG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (08) :2910-2914
[9]   Lipid patches in membrane protein oligomers: Crystal structure of the bacteriorhodopsin-lipid complex [J].
Essen, LO ;
Siegert, R ;
Lehmann, WD ;
Oesterhelt, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (20) :11673-11678
[10]   Fast protein dynamics probed with infrared vibrational echo experiments [J].
Fayer, MD .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2001, 52 :315-356