Advances in colloidal manipulation and transport via hydrodynamic interactions

被引:39
|
作者
Martinez-Pedrero, F. [1 ]
Tierno, P. [2 ,3 ,4 ]
机构
[1] Univ Complutense Madrid, Dept Quim Fis 1, Avda Complutense S-N, E-28040 Madrid, Spain
[2] Univ Barcelona, Dept Fis Mat Condensada, E-08028 Barcelona, Spain
[3] Univ Barcelona, UBICS, E-08028 Barcelona, Spain
[4] Univ Barcelona, Inst Nanociencia & Nanotecnol IN2UB, E-08028 Barcelona, Spain
关键词
Colloids; Propulsion at low Reynolds number; Hydrodynamic interactions; Bound states; Synchronization; LOW-REYNOLDS-NUMBER; SELF-DIFFUSION; MAGNETIC MANIPULATION; CONTROLLED PROPULSION; METACHRONAL WAVES; ACTIVE COLLOIDS; MOTION; MOTORS; SYNCHRONIZATION; PARTICLES;
D O I
10.1016/j.jcis.2018.02.062
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this review article, we highlight many recent advances in the field of micromanipulation of colloidal particles using hydrodynamic interactions (HIs), namely solvent mediated long-range interactions. At the micrsocale, the hydrodynamic laws are time reversible and the flow becomes laminar, features that allow precise manipulation and control of colloidal matter. We focus on different strategies where externally operated microstructures generate local flow fields that induce the advection and motion of the surrounding components. In addition, we review cases where the induced flow gives rise to hydrodynamic bound states that may synchronize during the process, a phenomenon essential in different systems such as those that exhibit self-assembly and swarming. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:296 / 311
页数:17
相关论文
共 50 条
  • [31] Effects of hydrodynamic interactions in binary colloidal mixtures driven oppositely by oscillatory external fields
    Wysocki, Adam
    Loewen, Hartmut
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (28)
  • [32] The chimera state in colloidal phase oscillators with hydrodynamic interaction
    Hamilton, Evelyn
    Bruot, Nicolas
    Cicuta, Pietro
    CHAOS, 2017, 27 (12)
  • [33] Modelling a hydrodynamic instability in freely settling colloidal gels
    Varga, Zsigmond
    Hofmann, Jennifer L.
    Swan, James W.
    JOURNAL OF FLUID MECHANICS, 2018, 856 : 1014 - 1044
  • [34] Modeling of colloidal transport in capillaries
    Stober, G.
    Steinbock, L. J.
    Keyser, U. F.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (08)
  • [35] Colloidal transport by active filaments
    Manna, Raj Kumar
    Kumar, P. B. Sunil
    Adhikari, R.
    JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (02)
  • [36] Inverse Design of Colloidal Crystals via Optimized Patchy Interactions
    Chen, D.
    Zhang, G.
    Torquato, S.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (35) : 8462 - 8468
  • [37] Structural manipulation of colloidal silica
    Roose, Jesse
    Rischka, Klaus
    Thiel, Karsten
    Hartwig, Andreas
    NANOSCALE, 2011, 3 (05) : 2329 - 2335
  • [38] Hydrodynamic Interactions at Low Reynolds Number
    Alexander, G. P.
    Yeomans, J. M.
    EXPERIMENTAL MECHANICS, 2010, 50 (09) : 1283 - 1292
  • [39] Hydrodynamic Interactions at Low Reynolds Number
    G. P. Alexander
    J. M. Yeomans
    Experimental Mechanics, 2010, 50 : 1283 - 1292
  • [40] Manipulation of a Micro-Object Using Topological Hydrodynamic Tweezers
    Yin, Peiran
    Li, Rui
    Wang, Zizhe
    Lin, Shaochun
    Tian, Tian
    Zhang, Liang
    Wu, Longhao
    Zhao, Jie
    Duan, Changkui
    Huang, Pu
    Du, Jiangfeng
    PHYSICAL REVIEW APPLIED, 2019, 12 (04)