Integration by parts for heat kernel measures revisited

被引:32
作者
Driver, BK
机构
[1] Department of Mathematics, 0112, University of California, San Diego, San Diego
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 1997年 / 76卷 / 08期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0021-7824(97)89966-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stochastic calculus proofs of the integration by parts formula for cylinder functions of parallel translation on the Wiener space of a compact Riemannian manifold (M) are given. These formulas are used to prove a new probabilistic formula for the logarithmic derivative of the heat kernel on M. This new formula is well suited for generalizations to infinite dimensional manifolds.
引用
收藏
页码:703 / 737
页数:35
相关论文
共 40 条
[21]   STOCHASTIC ANTICIPATIVE INTEGRALS ON A RIEMANNIAN MANIFOLD [J].
FANG, SZ .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 131 (01) :228-253
[22]  
FANG SZ, 1994, CR ACAD SCI I-MATH, V318, P257
[23]  
HSU EP, 1995, CR ACAD SCI I-MATH, V320, P1009
[24]   Quasi-invariance of the Wiener measure on the path space over a compact Riemannian manifold [J].
Hsu, EP .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 134 (02) :417-450
[25]  
HSU EP, 1995, P S PURE MATH, V57, P265
[26]  
HSU EP, 1996, IAS PARK CIT MATH I
[27]  
IKEDA N, 1981, STOCHASTIC DIFFERENT, P24
[28]  
KOBAYASHI S, 1963, F DIFFERENTIAL GEOME, V1
[29]  
Kunita H., 1997, Stochastic Flows and Stochastic Differential Equations, V24
[30]  
LEANDRE R, 1993, JOURNAL OF GEOMETRY AND PHYSICS, VOL 11, NOS 1-4, 1993, P517, DOI 10.1016/0393-0440(93)90075-P