Integration by parts for heat kernel measures revisited

被引:32
作者
Driver, BK
机构
[1] Department of Mathematics, 0112, University of California, San Diego, San Diego
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 1997年 / 76卷 / 08期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0021-7824(97)89966-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stochastic calculus proofs of the integration by parts formula for cylinder functions of parallel translation on the Wiener space of a compact Riemannian manifold (M) are given. These formulas are used to prove a new probabilistic formula for the logarithmic derivative of the heat kernel on M. This new formula is well suited for generalizations to infinite dimensional manifolds.
引用
收藏
页码:703 / 737
页数:35
相关论文
共 40 条
[1]  
AIDA S, 1997, P 1994 TAN S NEW TRE, P3
[2]   Integration by parts formulas and dilatation vector fields on elliptic probability spaces [J].
Airault, H ;
Malliavin, P .
PROBABILITY THEORY AND RELATED FIELDS, 1996, 106 (04) :447-494
[3]  
[Anonymous], P INT S STOCH DIFF E
[4]  
[Anonymous], 1996, ITOS STOCHASTIC CALC
[5]  
Bismut J. M., 1984, Large deviations and the Malliavin calculus, volume 45 of Progress in Mathematics, V45
[6]   MARTINGALES, THE MALLIAVIN CALCULUS AND HYPOELLIPTICITY UNDER GENERAL HORMANDER CONDITIONS [J].
BISMUT, JM .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 56 (04) :469-505
[7]   THE 1ST VARIATION OF AN INDEFINITE WIENER INTEGRAL [J].
CAMERON, RH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 2 (06) :914-924
[9]   YM2 - CONTINUUM EXPECTATIONS, LATTICE CONVERGENCE, AND LASSOS [J].
DRIVER, BK .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 123 (04) :575-616
[10]  
DRIVER BK, 1996, IN PRESS J FUNCT ANA