Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter

被引:92
作者
Inokuma, Kentaro [1 ]
Hasunuma, Tomohisa [2 ]
Kondo, Akihiko [1 ,3 ,4 ]
机构
[1] Kobe Univ, Grad Sch Engn, Dept Chem Sci & Engn, Nada Ku, Kobe, Hyogo 6578501, Japan
[2] Kobe Univ, Org Adv Sci & Technol, Kobe, Hyogo 6578501, Japan
[3] RIKEN, Biomass Engn Program, Yokohama, Kanagawa 2300045, Japan
[4] Korea Univ, Coll Life Sci & Biotechnol, Dept Food Biosci & Technol, Seoul 136713, South Korea
关键词
Saccharomyces cerevisiae; Cell-surface display; beta-glucosidase; Endoglucanase; Bioethanol production; Lignocellulosic biomass; DIRECT ETHANOL-PRODUCTION; SACCHAROMYCES-CEREVISIAE; WALL PROTEINS; PRETREATMENT TECHNOLOGIES; LIGNOCELLULOSIC BIOMASS; CELLULOLYTIC ENZYME; STATIONARY-PHASE; STRAIN; EXPRESSION; IDENTIFICATION;
D O I
10.1186/1754-6834-7-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The recombinant yeast strains displaying the heterologous cellulolytic enzymes on the cell surface using the glycosylphosphatidylinositol (GPI) anchoring system are considered promising biocatalysts for direct conversion of lignocellulosic materials to ethanol. However, the cellulolytic activities of the conventional cellulase-displaying yeast strains are insufficient for the hydrolysis of cellulose. In this study, we constructed novel gene cassettes for the efficient cellulose utilization by cellulase-displaying yeast strains. Results: The novel gene cassettes for the cell-surface display of Aspergillus aculeatus beta-glucosidase (BGL1) and Trichoderma reeseii endoglucanase II (EGII) were constructed using the promoter and the GPI anchoring region derived from Saccharomyces cerevisiae SED1. The gene cassettes were integrated into the S. cerevisiae genome, then the beta-glucosidase activity of these recombinant strains was evaluated. We revealed that simultaneous utilization of the SED1 promoter and Sed1 anchoring domain in a gene cassette enabled highly-efficient enzyme integration into the cell wall. The beta-glucosidase activity of recombinant yeast cells transduced with the novel gene cassette was 8.4-fold higher than that of a conventional strain. The novel EGII-displaying strain also achieved 106-fold higher hydrolysis activity against the water-insoluble cellulose than a conventional strain. Furthermore, direct ethanol production from hydrothermally processed rice straw was improved by the display of T. reeseii EGII using the novel gene cassette. Conclusions: We have developed novel gene cassettes for the efficient cell-surface display of exo- and endo-type cellulolytic enzymes. The results suggest that this gene cassette has the wide applicability for cell-surface display and that cellulase-displaying yeasts have significant potential for cost-effective bioethanol production from lignocellulosic biomass.
引用
收藏
页数:11
相关论文
共 51 条
[1]   Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review [J].
Alvira, P. ;
Tomas-Pejo, E. ;
Ballesteros, M. ;
Negro, M. J. .
BIORESOURCE TECHNOLOGY, 2010, 101 (13) :4851-4861
[2]  
Brachmann CB, 1998, YEAST, V14, P115
[3]   Fuel ethanol production:: Process design trends and integration opportunities [J].
Cardona, Carlos A. ;
Sanchez, Oscar J. .
BIORESOURCE TECHNOLOGY, 2007, 98 (12) :2415-2457
[4]  
Caro LHP, 1997, YEAST, V13, P1477, DOI 10.1002/(SICI)1097-0061(199712)13:15<1477::AID-YEA184>3.0.CO
[5]  
2-L
[6]   Reliable fusion PCR mediated by GC-rich overlap sequences [J].
Cha-aim, Kamonchai ;
Fukunaga, Tomoaki ;
Hoshida, Hisashi ;
Akada, Rinji .
GENE, 2009, 434 (1-2) :43-49
[7]   ONE-STEP TRANSFORMATION OF YEAST IN STATIONARY PHASE [J].
CHEN, DC ;
YANG, BC ;
KUO, TT .
CURRENT GENETICS, 1992, 21 (01) :83-84
[8]   Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives [J].
Dashtban, Mehdi ;
Schraft, Heidi ;
Qin, Wensheng .
INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2009, 5 (06) :578-595
[9]   β-glucosidases from five black Aspergillus species:: Study of their physico-chemical and biocatalytic properties [J].
Decker, CH ;
Visser, J ;
Schreier, P .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2000, 48 (10) :4929-4936
[10]   GPI anchor attachment is required for Gas1p transport from the endoplasmic reticulum in COP II vesicles [J].
Doering, TL ;
Schekman, R .
EMBO JOURNAL, 1996, 15 (01) :182-191