Multiscale Modeling of Cell Shape from the Actin Cytoskeleton

被引:14
作者
Rangamani, Padmini [1 ,2 ]
Xiong, Granville Yuguang [2 ]
Iyengar, Ravi [2 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[2] Mt Sinai Sch Med, Dept Pharmacol & Syst Therapeut, New York, NY USA
[3] Mt Sinai Sch Med, Syst Biol Ctr New York, New York, NY USA
来源
COMPUTATIONAL NEUROSCIENCE | 2014年 / 123卷
关键词
ARP2/3; COMPLEX; ENA/VASP PROTEINS; FILAMENT LENGTH; CAPPING PROTEIN; LEADING-EDGE; DYNAMICS; ADHESION; MOTILITY; POLYMERIZATION; MEMBRANE;
D O I
10.1016/B978-0-12-397897-4.00002-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The actin cytoskeleton is a dynamic structure that constantly undergoes complex reorganization events during many cellular processes. Mathematical models and simulations are powerful tools that can provide insight into the physical mechanisms underlying these processes and make predictions that can be experimentally tested. Representation of the interactions of the actin filaments with the plasma membrane and the movement of the plasma membrane for computation remains a challenge. Here, we provide an overview of the different modeling approaches used to study cytoskeletal dynamics and highlight the differential geometry approach that we have used to implement the interactions between the plasma membrane and the cytoskeleton. Using cell spreading as an example, we demonstrate how this approach is able to successfully capture in simulations, experimentally observed behavior. We provide a perspective on how the differential geometry approach can be used for other biological processes.
引用
收藏
页码:143 / 167
页数:25
相关论文
共 72 条
[1]  
Alberts B., 2002, The shape and structure of proteins, Vfourth, DOI 10.1093/aob/mcg023
[2]  
[Anonymous], 2003, Visualization and Mathematics, DOI DOI 10.1007/978-3-662-05105-4_2
[3]  
Aplin AE, 1998, PHARMACOL REV, V50, P197
[4]   Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase [J].
Arber, S ;
Barbayannis, FA ;
Hanser, H ;
Schneider, C ;
Stanyon, CA ;
Bernard, O ;
Caroni, P .
NATURE, 1998, 393 (6687) :805-809
[5]   Mechanics and dynamics of actin-driven thin membrane protrusions [J].
Atilgan, E ;
Wirtz, D ;
Sun, SX .
BIOPHYSICAL JOURNAL, 2006, 90 (01) :65-76
[6]   Morphology of the lamellipodium and organization of actin filaments at the leading edge of crawling cells [J].
Atilgan, E ;
Wirtz, D ;
Sun, SX .
BIOPHYSICAL JOURNAL, 2005, 89 (05) :3589-3602
[7]   Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility [J].
Bear, JE ;
Svitkina, TM ;
Krause, M ;
Schafer, DA ;
Loureiro, JJ ;
Strasser, GA ;
Maly, IV ;
Chaga, OY ;
Cooper, JA ;
Borisy, GG ;
Gertler, FB .
CELL, 2002, 109 (04) :509-521
[8]   Mathematical Modeling of Endocytic Actin Patch Kinetics in Fission Yeast: Disassembly Requires Release of Actin Filament Fragments [J].
Berro, Julien ;
Sirotkin, Vladimir ;
Pollard, Thomas D. .
MOLECULAR BIOLOGY OF THE CELL, 2010, 21 (16) :2905-2915
[9]   Adhesion-dependent cell mechanosensitivity [J].
Bershadsky, AD ;
Balaban, NQ ;
Geiger, B .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2003, 19 :677-695
[10]   Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins [J].
Blanchoin, L ;
Amann, KJ ;
Higgs, HN ;
Marchand, JB ;
Kaiser, DA ;
Pollard, TD .
NATURE, 2000, 404 (6781) :1007-1011