The motion properties of the infinitesimal body in the framework of bicircular Sun perturbed Earth-Moon system

被引:48
作者
Abouelmagd, Elbaz, I [1 ,2 ]
Ansari, Abdullah A. [3 ]
机构
[1] NRIAG, Astron Dept, CMSDRG, Cairo 11421, Egypt
[2] King Abdulaziz Univ, Math Dept, Nonlinear Anal & Appl Math Res Grp NAAM, Fac Sci, Jeddah, Saudi Arabia
[3] ICAIR, Ratiya Marg, New Delhi, India
关键词
Bicircular model; Energy conservation law; Stability of equilibrium points; Basins attraction of convergence; PERIODIC TRANSFER ORBITS; FRACTAL BASINS; 5-BODY PROBLEM; CONVERGENCE; POINTS;
D O I
10.1016/j.newast.2019.101282
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we investigate the cases which admit Jacobian and energy conversation are constants, in the Sun perturbed Earth-Moon system. We prove that the Jacobian integral is a constant in two special cases, which can be used to determine the regions of motion from the zero velocity surfaces. On continuation of our study, we numerically illustrate the equilibrium points and their stability and Poincare surfaces of section. In addition we reveal the basins of attraction, associated with the points of equilibrium using color-coded diagrams.
引用
收藏
页数:12
相关论文
共 25 条
[1]   PERIODIC ORBITS FOR THE PERTURBED PLANAR CIRCULAR RESTRICTED 3-BODY PROBLEM [J].
Abouelmagd, Elbaz, I ;
Garcia Guirao, Juan Luis ;
Libre, Jaume L. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (03) :1007-1020
[2]   Periodic Solution of the Two-Body Problem by KB Averaging Method Within Frame of the Modified Newtonian Potential [J].
Abouelmagd, Elbaz I. .
JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2018, 65 (03) :291-306
[3]   Periodic Orbits of the Planar Anisotropic Kepler Problem [J].
Abouelmagd, Elbaz I. ;
Llibre, Jaume ;
Garcia Guirao, Juan Luis .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (03)
[4]   Periodic orbits around the collinear libration points [J].
Abouelmagd, Elbaz I. ;
Alzahrani, Faris ;
Hobiny, Aatef ;
Guirao, J. L. G. ;
Alhothuali, M. .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (04) :1716-1727
[5]   Analytical Study of Periodic Solutions on Perturbed Equatorial Two-Body Problem [J].
Abouelmagd, Elbaz I. ;
Mortari, Daniele ;
Selim, Hadia H. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (14)
[6]   Numerical integration of a relativistic two-body problem via a multiple scales method [J].
Abouelmagd, Elbaz I. ;
Elshaboury, S. M. ;
Selim, H. H. .
ASTROPHYSICS AND SPACE SCIENCE, 2016, 361 (01) :10
[7]   Out of plane equilibrium points locations and the forbidden movement regions in the restricted three-body problem with variable mass [J].
Abouelmagd, Elbaz I. ;
Mostafa, A. .
ASTROPHYSICS AND SPACE SCIENCE, 2015, 357 (01)
[8]   The effect of photogravitational force and oblateness in the perturbed restricted three-body problem [J].
Abouelmagd, Elbaz I. .
ASTROPHYSICS AND SPACE SCIENCE, 2013, 346 (01) :51-69
[9]   Existence and stability of triangular points in the restricted three-body problem with numerical applications [J].
Abouelmagd, Elbaz I. .
ASTROPHYSICS AND SPACE SCIENCE, 2012, 342 (01) :45-53
[10]   On the libration collinear points in the restricted three-body problem [J].
Alzahrani, F. ;
Abouelmagd, Elbaz I. ;
Guirao, Juan L. G. ;
Hobiny, A. .
OPEN PHYSICS, 2017, 15 (01) :58-67