Finite-time annular domain stability of impulsive switched systems: mode-dependent parameter approach

被引:39
作者
Gao, Lijun [1 ]
Luo, Fangmei [1 ]
Yan, Zhiguo [2 ]
机构
[1] Qufu Normal Univ, Sch Elect Engn & Automat, Rizhao, Peoples R China
[2] Qilu Univ Technol, Sch Elect Engn & Automat, Jinan, Shandong, Peoples R China
基金
中国博士后科学基金;
关键词
Finite-time annular domain stability; impulsive switched systems; mode-dependent parameter; average impulsive switched interval; CONVERSE THEOREMS; STABILIZATION; PERSPECTIVES; CONTROLLER; SUBJECT; DELAY;
D O I
10.1080/00207179.2017.1396360
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the finite-time stability of impulsive switched systems. By applying mode-dependent parameter approach and average impulsive switched interval technique, the conditions that guarantee the finite-time annular domain stability and finite-time annular domain boundedness for general linear and nonlinear impulsive switched systems are established. Meanwhile, the superiority of mode-dependent parameter approach over common parameter approach is analysed. Also, we consider the effect of different impulsive strengths and draw a less conservative conclusion. Moreover, we extend the conclusion from nonlinear impulsive switched systems to linear impulsive switched systems, and a new sufficient condition for state feedback controllers is proposed on the basis of coupled matrix inequalities. Furthermore, for systems containing external disturbance, we obtain a sufficient condition of finite-time annular domain boundedness. Finally, we present two examples to illustrate the effectiveness of the results.
引用
收藏
页码:1381 / 1392
页数:12
相关论文
共 35 条
[1]  
Agarwal A., 2005, Foundations of Analog and Digital Electronic Circuits
[2]   Robust Stability and Stabilization of Linear Switched Systems With Dwell Time [J].
Allerhand, Liron I. ;
Shaked, Uri .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (02) :381-386
[3]   Finite-time control of discrete-time linear systems [J].
Amato, F ;
Ariola, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (05) :724-729
[4]   Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems [J].
Amato, F. ;
De Tommasi, G. ;
Pironti, A. .
AUTOMATICA, 2013, 49 (08) :2546-2550
[5]   Robust finite-time stability of impulsive dynamical linear systems subject to norm-bounded uncertainties [J].
Amato, F. ;
Ambrosino, R. ;
Ariola, M. ;
De Tommasi, G. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2011, 21 (10) :1080-1092
[6]   Finite-time control of linear systems subject to parametric uncertainties and disturbances [J].
Amato, F ;
Ariola, M ;
Dorato, P .
AUTOMATICA, 2001, 37 (09) :1459-1463
[7]   Finite-Time Stability of Linear Time-Varying Systems: Analysis and Controller Design [J].
Amato, Francesco ;
Ariola, Marco ;
Cosentino, Carlo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (04) :1003-1008
[8]   Sufficient Conditions for Finite-Time Stability of Impulsive Dynamical Systems [J].
Ambrosino, Roberto ;
Calabrese, Francesco ;
Cosentino, Carlo ;
De Tommasi, Gianmaria .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (04) :861-865
[9]   On stabilization of switched linear systems [J].
Artstein, Zvi ;
Ronen, Jonathan .
SYSTEMS & CONTROL LETTERS, 2008, 57 (11) :919-926
[10]   Perspectives and results on the stability and stabilizability of hybrid systems [J].
DeCarlo, RA ;
Branicky, MS ;
Pettersson, S ;
Lennartson, B .
PROCEEDINGS OF THE IEEE, 2000, 88 (07) :1069-1082