Projection methods and condition numbers in uniform norm for Fredholm and Cauchy singular integral equations

被引:34
作者
De Bonis, M. C. [1 ]
Mastroianni, G. [1 ]
机构
[1] Univ Basilicata, Dipartimento Matemat, I-85100 Potenza, Italy
关键词
Cauchy singular integral equation; Fredholm integral equations; projection method; Lagrange interpolation; Fourier sum;
D O I
10.1137/050626934
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the authors propose a numerical method for the approximate solution of some classes of Fredholm and Cauchy integral equations including the "discrete collocation" and "collocation" methods.
引用
收藏
页码:1351 / 1374
页数:24
相关论文
共 51 条
[1]  
[Anonymous], J INTEGRAL EQUATIONS
[2]  
[Anonymous], 1994, THEORY APPROXIMATION
[3]  
[Anonymous], 1982, INTEGRAL EQUATIONS E
[4]  
Atkinson K. E., 1997, CAMBRIDGE MONOGR APP, V4
[5]  
BIALECKI B, 1992, NATO ADV SCI I C-MAT, V357, P81
[6]  
Capobianco M. R., 1997, APPROXIMATION OPTIMI, V1, P45
[7]  
CAPOBIANCO MR, 1997, J INTEGRAL EQUAT, V9, P21
[8]   CONVERGENCE OF GAUSS TYPE PRODUCT-FORMULAS FOR THE EVALUATION OF TWO-DIMENSIONAL CAUCHY PRINCIPAL VALUE INTEGRALS [J].
CRISCUOLO, G ;
MASTROIANNI, G .
BIT, 1987, 27 (01) :72-84
[9]   ON THE UNIFORM-CONVERGENCE OF GAUSSIAN QUADRATURE-RULES FOR CAUCHY PRINCIPAL VALUE INTEGRALS [J].
CRISCUOLO, G ;
MASTROIANNI, G .
NUMERISCHE MATHEMATIK, 1989, 54 (04) :445-461
[10]  
CRISCUOLO G, 1987, MATH COMPUT, V48, P725, DOI 10.1090/S0025-5718-1987-0878702-4