New Types of Canal Surfaces in Minkowski 3-Space

被引:19
|
作者
Ucum, Ali [1 ]
Ilarslan, Kazim [1 ]
机构
[1] Kirikkale Univ, Fac Sci & Arts, Dept Math, Kirikkale, Turkey
关键词
Canal surfaces; Tubular surfaces; Weingarten surfaces; Minkowski; 3-space; Space curves; RULED SURFACES;
D O I
10.1007/s00006-015-0556-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Canal surface is a surface formed as the envelope of a family of spheres whose centers lie on a space curve. In Minkowski 3-space, many authors studied canal surfaces. However, when one investigates the papers, it is obvious that the parametrizations of the canal surfaces were found with respect to only pseudo sphere . In this paper, we reconsider the canal surfaces for all Lorentz spheres which are pseudo sphere , pseudo-hyperbolic sphere H (2)(r) or lightlike cone C and we find the parametrizations of the surfaces. Moreover, we found the parametrization of the tubular surfaces with respect to all Lorentz spheres. Also, we study Weingarten and linear Weingarten type spacelike tubular surface obtained from pseudo-hyperbolic sphere and the singular points of the spacelike tubular surface obtained from pseudo-hyperbolic sphere H-0(2)(r).
引用
收藏
页码:449 / 468
页数:20
相关论文
共 50 条
  • [1] New Types of Canal Surfaces in Minkowski 3-Space
    Ali Uçum
    Kazım İlarslan
    Advances in Applied Clifford Algebras, 2016, 26 : 449 - 468
  • [2] A New Representation of Canal Surfaces with Split Quaternions in Minkowski 3-Space
    Erdem Kocakuşaklı
    O. Oğulcan Tuncer
    İsmail Gök
    Yusuf Yaylı
    Advances in Applied Clifford Algebras, 2017, 27 : 1387 - 1409
  • [3] A New Representation of Canal Surfaces with Split Quaternions in Minkowski 3-Space
    Kocakusakli, Erdem
    Tuncer, O. Ogulcan
    Gok, Ismail
    Yayli, Yusuf
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 1387 - 1409
  • [4] Space-like Loxodromes on the Canal Surfaces in Minkowski 3-Space
    Sonmez, Nilgun
    Babaarslan, Murat
    FILOMAT, 2018, 32 (14) : 4821 - 4839
  • [5] Geometric Characterizations of Canal Surfaces in Minkowski 3-Space II
    Qian, Jinhua
    Su, Mengfei
    Fu, Xueshan
    Jung, Seoung Dal
    MATHEMATICS, 2019, 7 (08)
  • [6] GEOMETRIC CHARACTERIZATIONS OF CANAL SURFACES IN MINKOWSKI 3-SPACE I
    Fu, Xueshan
    Jung, Seoung Dal
    Qian, Jinhua
    Su, Mengfei
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (04) : 867 - 883
  • [7] Classifications of Canal Surfaces with the Gauss Maps in Minkowski 3-Space
    Qian, Jinhua
    Tian, Xueqian
    Fu, Xueshan
    Kim, Young Ho
    MATHEMATICS, 2020, 8 (09)
  • [8] New results on helix surfaces in the Minkowski 3-space
    Kelleci, Alev
    Turgay, Nurettin Cenk
    Ergut, Mahmut
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2019, 12 (01): : 61 - 70
  • [9] CAUSTICS OF SURFACES IN THE MINKOWSKI 3-SPACE
    Tari, Farid
    QUARTERLY JOURNAL OF MATHEMATICS, 2012, 63 (01): : 189 - 209
  • [10] LIGHTLIKE SURFACES IN MINKOWSKI 3-SPACE
    Inoguchi, Jun-Ichi
    Lee, Sungwook
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2009, 6 (02) : 267 - 283