Decomposition into pairs-of-pants for complex algebraic hypersurfaces

被引:93
作者
Mikhalkin, G
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] VA Steklov Math Inst, St Petersburg Branch, St Petersburg 191011, Russia
基金
美国国家科学基金会;
关键词
topology of projective hypersurfaces; pairs of pants decomposition; singular torus fibrations;
D O I
10.1016/j.top.2003.11.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well-known that a Riemann surface can be decomposed into the so-called pairs-of-pants. Each pair-of-pants is diffeomorphic to a Riemann sphere minus 3 points. We show that a smooth complex projective hypersurface of arbitrary dimension admits a similar decomposition. The n-dimensional pair-of-pants is diffeomorphic to CPn minus n + 2 hyperplanes. Alternatively, these decompositions can be treated as certain fibrations on the hypersurfaces. We show that there exists a singular fibration on the hypersurface with an n-dimensional polyhedral complex as its base and a real n-torus as its fiber. The base accommodates the geometric genus of a hypersurface V. Its homotopy type is a wedge of h(n,o)(V) spheres S-n. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1035 / 1065
页数:31
相关论文
共 19 条
[1]  
[Anonymous], 1990, Leningrad Math. J.
[2]  
[Anonymous], 1994, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
[4]  
Cannas da Silva A., 2001, Lectures on Symplectic Geometry
[5]   Laurent determinants and arrangements of hyperplane amoebas [J].
Forsberg, M ;
Passare, M ;
Tsikh, A .
ADVANCES IN MATHEMATICS, 2000, 151 (01) :45-70
[6]  
Gelfand I. M., 1994, Mathematics Theory & Applications, DOI DOI 10.1007/978-0-8176-4771-1
[7]   Patchworking algebraic curves disproves the Ragsdale conjecture [J].
Itenberg, I ;
Viro, O .
MATHEMATICAL INTELLIGENCER, 1996, 18 (04) :19-28
[8]   A CHARACTERIZATION OF A-DISCRIMINANTAL HYPERSURFACES IN TERMS OF THE LOGARITHMIC GAUSS MAP [J].
KAPRANOV, MM .
MATHEMATISCHE ANNALEN, 1991, 290 (02) :277-285
[9]  
KAPRANOV MM, 2000, AMOEBAS NONARCHIMEDI
[10]  
Khovanskii A.G., 1978, Funct. Anal. Appl, V11, P289, DOI [10.1007/BF01077143, DOI 10.1007/BF01077143]