Some remarks on quadrilateral mixed finite elements

被引:7
作者
Boffi, Daniele [1 ]
Gastaldi, Lucia [2 ]
机构
[1] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[2] Univ Brescia, Dipartimento Matemat, Brescia, Italy
关键词
Quadrilateral; Finite elements; Approximation; Mimetic finite differences; Mixed finite elements; FLUID-STRUCTURE INTERACTION; POLYHEDRAL MESHES; DIFFUSION-PROBLEMS; DIFFERENCE METHODS; APPROXIMATION; CONVERGENCE; SYSTEMS;
D O I
10.1016/j.compstruc.2008.12.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
It is well known that quadrilateral finite elements may produce unsatisfactory results when used on distorted meshes. It turns out that many commonly used finite elements achieve suboptimal convergence properties on distorted quadrilaterals; among such elements we recall in particular serendipity (trunk) scalar elements and basically all vectorial elements for the approximation of problems involving the functional space H(div) (like Raviart-Thomas or Brezzi-Douglas-Marini spaces for Darcy flow). In two space dimensions, a similar remark applies to edge finite elements for the approximation of Maxwell's problems involving the space H(curl). On the other hand, mimetic finite differences have become popular for the approximation of problems involving H(div) on very general geometries. The aim of this paper is to show how to use the ideas of mimetic finite differences for the stabilization of Raviart-Thomas element on general quadrilateral meshes. It turns out that such stabilization can be performed by a slight modification of the standard Raviart-Thomas element which does not increase significantly the computational cost of the original scheme. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:751 / 757
页数:7
相关论文
共 28 条
[1]   Quadrilateral H(div) finite elements [J].
Arnold, DN ;
Boffi, D ;
Falk, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) :2429-2451
[2]  
Babuska I., 1991, Handbook of Numerical Analysis
[3]   A MIXED DISPLACEMENT-BASED FINITE-ELEMENT FORMULATION FOR ACOUSTIC FLUID-STRUCTURE INTERACTION [J].
BATHE, KJ ;
NITIKITPAIBOON, C ;
WANG, X .
COMPUTERS & STRUCTURES, 1995, 56 (2-3) :225-237
[4]   Approximation of a structural acoustic vibration problem by hexahedral finite elements [J].
Bermúdez, A ;
Gamallo, P ;
Nogueiras, MR ;
Rodríguez, R .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (02) :391-421
[5]   FINITE-ELEMENT VIBRATION ANALYSIS OF FLUID-SOLID SYSTEMS WITHOUT SPURIOUS MODES [J].
BERMUDEZ, A ;
DURAN, R ;
MUSCHIETTI, MA ;
RODRIGUEZ, R ;
SOLOMIN, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (04) :1280-1295
[6]   Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals [J].
Berndt, M ;
Lipnikov, K ;
Shashkov, M ;
Wheeler, MF ;
Yotov, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (04) :1728-1749
[7]  
Berndtf M., 2001, J NUMER MATH, V9, P265, DOI [10.1515/JNMA.2001.265, DOI 10.1515/JNMA.2001.265]
[8]   Computational models of electromagnetic resonators: Analysis of edge element approximation [J].
Boffi, D ;
Fernandes, P ;
Gastaldi, L ;
Perugia, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (04) :1264-1290
[9]   Edge element computation of Maxwell's eigenvalues on general quadrilateral meshes [J].
Boffi, D ;
Kikuchi, F .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (02) :265-273
[10]  
Boffi D, 2000, CMES-COMP MODEL ENG, V1, P31