Some remarks on quadrilateral mixed finite elements

被引:7
|
作者
Boffi, Daniele [1 ]
Gastaldi, Lucia [2 ]
机构
[1] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[2] Univ Brescia, Dipartimento Matemat, Brescia, Italy
关键词
Quadrilateral; Finite elements; Approximation; Mimetic finite differences; Mixed finite elements; FLUID-STRUCTURE INTERACTION; POLYHEDRAL MESHES; DIFFUSION-PROBLEMS; DIFFERENCE METHODS; APPROXIMATION; CONVERGENCE; SYSTEMS;
D O I
10.1016/j.compstruc.2008.12.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
It is well known that quadrilateral finite elements may produce unsatisfactory results when used on distorted meshes. It turns out that many commonly used finite elements achieve suboptimal convergence properties on distorted quadrilaterals; among such elements we recall in particular serendipity (trunk) scalar elements and basically all vectorial elements for the approximation of problems involving the functional space H(div) (like Raviart-Thomas or Brezzi-Douglas-Marini spaces for Darcy flow). In two space dimensions, a similar remark applies to edge finite elements for the approximation of Maxwell's problems involving the space H(curl). On the other hand, mimetic finite differences have become popular for the approximation of problems involving H(div) on very general geometries. The aim of this paper is to show how to use the ideas of mimetic finite differences for the stabilization of Raviart-Thomas element on general quadrilateral meshes. It turns out that such stabilization can be performed by a slight modification of the standard Raviart-Thomas element which does not increase significantly the computational cost of the original scheme. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:751 / 757
页数:7
相关论文
共 50 条
  • [1] BARYCENTRIC COORDINATE BASED MIXED FINITE ELEMENTS ON QUADRILATERAL/HEXAHEDRAL MESH
    Klausen, Runhild A.
    Mundal, Sissel S.
    Dahle, Helge K.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2011, 8 (04) : 584 - 598
  • [2] Mixed finite elements for elasticity on quadrilateral meshes
    Arnold, Douglas N.
    Awanou, Gerard
    Qiu, Weifeng
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2015, 41 (03) : 553 - 572
  • [3] Approximation by quadrilateral finite elements
    Arnold, DN
    Boffi, D
    Falk, RS
    MATHEMATICS OF COMPUTATION, 2002, 71 (239) : 909 - 922
  • [4] Quadrilateral H(div) finite elements
    Arnold, DN
    Boffi, D
    Falk, RS
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) : 2429 - 2451
  • [5] On the finite element method on quadrilateral meshes
    Boffi, Daniele
    APPLIED NUMERICAL MATHEMATICS, 2006, 56 (10-11) : 1271 - 1282
  • [6] Some Remarks on Eigenvalue Approximation by Finite Elements
    Boffi, Daniele
    Gardini, Francesca
    Gastaldi, Lucia
    FRONTIERS IN NUMERICAL ANALYSIS - DURHAM 2010, 2012, 85 : 1 - 77
  • [7] Two Remarks on Rectangular Mixed Finite Elements for Elasticity
    Gerard Awanou
    Journal of Scientific Computing, 2012, 50 : 91 - 102
  • [8] Two Remarks on Rectangular Mixed Finite Elements for Elasticity
    Awanou, Gerard
    JOURNAL OF SCIENTIFIC COMPUTING, 2012, 50 (01) : 91 - 102
  • [9] On convergence of nonconforming convex quadrilateral finite elements AGQ6
    Flajs, Rado
    Cen, Song
    Saje, Miran
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (25-28) : 1816 - 1827
  • [10] A class of nonconforming quadrilateral finite elements for incompressible flow
    Huang ZhongYi
    Li Ye
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (02) : 379 - 393