Shape- and phase-controlled ZnS nanostructures and their optical properties

被引:14
作者
Zhou, Xin [1 ,2 ]
Zeng, Xianghua [1 ,2 ]
Yan, Xiaoqing [3 ]
Xia, Weiwei [1 ,2 ]
Zhou, Yuxue [1 ,2 ]
Shen, Xiaoshuang [1 ,2 ]
机构
[1] Yangzhou Univ, Sch Phys Sci & Technol, Yangzhou 225002, Peoples R China
[2] Yangzhou Univ, Inst Optoelect Technol, Yangzhou 225002, Peoples R China
[3] Jiangsu Open Univ, Nantong Coll, Nantong 226006, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Chalcogenides; X-ray diffraction; Raman spectroscopy; Defects; Surface properties; RAMAN-SPECTROSCOPY; SIZE DEPENDENCE; QUANTUM DOTS; PHONON MODES; WURTZITE; NANOCRYSTALS; PHOTOLUMINESCENCE; NANOPARTICLES; TEMPERATURE; NANOWIRE;
D O I
10.1016/j.materresbull.2014.06.027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Single-crystalline ZnS nanoparticles with a zinc-blende crystal structure have some microdefects such as stacking faults and nanotwins. In contrast, ZnS nanorods have a wurtzite crystal structure, which grows along the [0 0 0 1] direction, although some nanorods display the intergrowth of a minor zinc-blonde phase and the major wurtzite phase, which forms stacking faults or zinc-blende/wurtzite ZnS nanotwins. Raman spectroscopy measurements reveal surface phonons and longitudinal optical phonons in the nanoparticles, nanorods and doublet phonons that are associated with the transversal optical phonons of the A1 and E1 modes in only the nanorods. The first-order longitudinal optical phonon mode exhibits a blueshift of 6 cm(-1) when the particle size increases from 5 to 15 nm, but there is no shift in the range of 15-30 nm because of quantum confinement and microdefects. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:25 / 31
页数:7
相关论文
共 34 条
[1]   Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nanowires [J].
Adu, K. W. ;
Xiong, Q. ;
Gutierrez, H. R. ;
Chen, G. ;
Eklund, P. C. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2006, 85 (03) :287-297
[2]   Micro-Raman investigation of optical phonons in ZnO nanocrystals [J].
Alim, KA ;
Fonoberov, VA ;
Shamsa, M ;
Balandin, AA .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (12)
[3]   RAMAN EFFECT IN WURTZITE- AND ZINC-BLENDE-TYPE ZNS SINGLE CRYSTALS [J].
BRAFMAN, O ;
MITRA, SS .
PHYSICAL REVIEW, 1968, 171 (03) :931-&
[4]   Synthesis of wurtzite ZnS nanowire bundles using a solvothermal technique [J].
Chai, Lanlan ;
Du, Jin ;
Xiong, Shenglin ;
Li, Haibo ;
Zhu, Yongchun ;
Qian, Yitai .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (34) :12658-12662
[5]   Raman scattering study of zinc blende and wurtzite ZnS [J].
Cheng, Y. C. ;
Jin, C. Q. ;
Gao, F. ;
Wu, X. L. ;
Zhong, W. ;
Li, S. H. ;
Chu, Paul K. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (12)
[6]   Size dependence of surface optical mode and electron-phonon coupling in ZnO nanocombs [J].
Fan, Donghua ;
Zhang, Rong ;
Zhu, Yufu ;
Peng, Huiren .
PHYSICA B-CONDENSED MATTER, 2012, 407 (17) :3510-3514
[7]   Size Effects of Raman and Photoluminescence Spectra of CdS Nanobelts [J].
Hu, Chuan ;
Zeng, Xianghua ;
Cui, Jieya ;
Chen, Haitao ;
Lu, Junfeng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (40) :20998-21005
[8]   Stacking-Order-Dependent Optoelectronic Properties of Bilayer Nanofilm Photodetectors Made From Hollow ZnS and ZnO Microspheres [J].
Hu, Linfeng ;
Chen, Min ;
Shan, Wenze ;
Zhan, Tianrong ;
Liao, Meiyong ;
Fang, Xiaosheng ;
Hu, Xinhua ;
Wu, Limin .
ADVANCED MATERIALS, 2012, 24 (43) :5872-5877
[9]   Anisotropic Formation and Distribution of Stacking Faults in II-VI Semiconductor Nanorods [J].
Hughes, Steven M. ;
Alivisatos, A. Paul .
NANO LETTERS, 2013, 13 (01) :106-110
[10]   Homoepitaxial growth and lasing properties of ZnS nanowire and nanoribbon arrays [J].
Jiang, Yang ;
Zhang, Wen Jun ;
Jie, Jian Sheng ;
Meng, Xiang Min ;
Zapien, Juan Antonio ;
Lee, Shuit-Tong .
ADVANCED MATERIALS, 2006, 18 (12) :1527-+