Slip-flow boundary condition for straight walls in the lattice Boltzmann model

被引:35
作者
Szalmas, Lajos [1 ]
机构
[1] Budapest Univ Technol & Econ, Fac Nat Sci, H-1111 Budapest, Hungary
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 06期
关键词
D O I
10.1103/PhysRevE.73.066710
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A slip-flow boundary condition has been developed in the lattice Boltzmann model combining an interpolation method and a simple slip boundary condition for straight walls placed at arbitrary distance from the last fluid node. An analytical expression has been derived to connect the model parameters with the slip velocity for Couette and Poiseuille flows in the nearly continuum limit. The proposed interpolation method ensures that the slip velocity is independent of the wall position in first order of the Knudsen number. Computer simulations have been carried out to validate the model. The Couette and Poiseuille flows agree with the analytical results to machine order. Numerical simulation of a moving square demonstrates the accuracy of the model for walls moving in both the tangential and normal directions.
引用
收藏
页数:5
相关论文
共 16 条
[1]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[2]   Momentum transfer of a Boltzmann-lattice fluid with boundaries [J].
Bouzidi, M ;
Firdaouss, M ;
Lallemand, P .
PHYSICS OF FLUIDS, 2001, 13 (11) :3452-3459
[3]   Realization of fluid boundary conditions via discrete Boltzmann dynamics [J].
Chen, HD ;
Teixeira, C ;
Molvig, K .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (08) :1281-1292
[4]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[5]   LATTICE-GAS AUTOMATA FOR THE NAVIER-STOKES EQUATION [J].
FRISCH, U ;
HASSLACHER, B ;
POMEAU, Y .
PHYSICAL REVIEW LETTERS, 1986, 56 (14) :1505-1508
[6]  
He XY, 1997, PHYS REV E, V56, P6811, DOI 10.1103/PhysRevE.56.6811
[7]   Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model [J].
He, XY ;
Zou, QS ;
Luo, LS ;
Dembo, M .
JOURNAL OF STATISTICAL PHYSICS, 1997, 87 (1-2) :115-136
[8]   NUMERICAL SIMULATIONS OF PARTICULATE SUSPENSIONS VIA A DISCRETIZED BOLTZMANN-EQUATION .1. THEORETICAL FOUNDATION [J].
LADD, AJC .
JOURNAL OF FLUID MECHANICS, 1994, 271 :285-309
[9]   Lattice Boltzmann method for moving boundaries [J].
Lallemand, P ;
Luo, LS .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 184 (02) :406-421
[10]   SLIP LENGTH IN A DILUTE GAS [J].
MORRIS, DL ;
HANNON, L ;
GARCIA, AL .
PHYSICAL REVIEW A, 1992, 46 (08) :5279-5281