Segmentation of Image Data from Complex Organotypic 3D Models of Cancer Tissues with Markov Random Fields

被引:9
作者
Robinson, Sean [1 ,2 ,3 ,4 ,5 ]
Guyon, Laurent [3 ,4 ,5 ]
Nevalainen, Jaakko [1 ,6 ]
Toriseva, Mervi [2 ,7 ,8 ]
Akerfelt, Malin [2 ,7 ,8 ]
Nees, Matthias [2 ,7 ,8 ]
机构
[1] Univ Turku, Dept Math & Stat, Turku, Finland
[2] VTT Tech Res Ctr Finland, Ind Biotechnol, Turku, Finland
[3] Univ Grenoble Alpes, F-38000 Grenoble, France
[4] CEA Grenoble, iRTSV, Biol Grande Echelle, F-38054 Grenoble, France
[5] INSERM, U1038, F-38054 Grenoble, France
[6] Univ Tampere, Sch Hlth Sci, FIN-33101 Tampere, Finland
[7] Univ Turku, Inst Biomed, Turku, Finland
[8] Univ Turku, Turku Ctr Biotechnol, Turku, Finland
基金
芬兰科学院;
关键词
ENERGY MINIMIZATION; COMPUTER VISION; CELL-NUCLEI; TRACKING; FLOW;
D O I
10.1371/journal.pone.0143798
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Organotypic, three dimensional (3D) cell culture models of epithelial tumour types such as prostate cancer recapitulate key aspects of the architecture and histology of solid cancers. Morphometric analysis of multicellular 3D organoids is particularly important when additional components such as the extracellular matrix and tumour microenvironment are included in the model. The complexity of such models has so far limited their successful implementation. There is a great need for automatic, accurate and robust image segmentation tools to facilitate the analysis of such biologically relevant 3D cell culture models. We present a segmentation method based on Markov random fields (MRFs) and illustrate our method using 3D stack image data from an organotypic 3D model of prostate cancer cells co-cultured with cancer-associated fibroblasts (CAFs). The 3D segmentation output suggests that these cell types are in physical contact with each other within the model, which has important implications for tumour biology. Segmentation performance is quantified using ground truth labels and we show how each step of our method increases segmentation accuracy. We provide the ground truth labels along with the image data and code. Using independent image data we show that our segmentation method is also more generally applicable to other types of cellular microscopy and not only limited to fluorescence microscopy.
引用
收藏
页数:26
相关论文
共 45 条
[1]   Automated tracking of tumor-stroma morphology in microtissues identifies functional targets within the tumor microenvironment for therapeutic intervention [J].
Akerfelt, Malin ;
Bayramoglu, Neslihan ;
Robinson, Sean ;
Toriseva, Mervi ;
Schukov, Hannu-Pekka ;
Harma, Ville ;
Virtanen, Johannes ;
Sormunen, Raija ;
Kaakinen, Mika ;
Kannala, Juho ;
Eklund, Lauri ;
Heikkila, Janne ;
Nees, Matthias .
ONCOTARGET, 2015, 6 (30) :30035-30056
[2]   Fast and robust optical flow for time-lapse microscopy using super-voxels [J].
Amat, Fernando ;
Myers, Eugene W. ;
Keller, Philipp J. .
BIOINFORMATICS, 2013, 29 (03) :373-380
[3]  
[Anonymous], IEEE TRANS SYS MAN C
[4]   Fast approximate energy minimization via graph cuts [J].
Boykov, Y ;
Veksler, O ;
Zabih, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) :1222-1239
[5]   An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision [J].
Boykov, Y ;
Kolmogorov, V .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (09) :1124-1137
[6]   CellProfiler: image analysis software for identifying and quantifying cell phenotypes [J].
Carpenter, Anne E. ;
Jones, Thouis Ray ;
Lamprecht, Michael R. ;
Clarke, Colin ;
Kang, In Han ;
Friman, Ola ;
Guertin, David A. ;
Chang, Joo Han ;
Lindquist, Robert A. ;
Moffat, Jason ;
Golland, Polina ;
Sabatini, David M. .
GENOME BIOLOGY, 2006, 7 (10)
[7]  
Danek O, 2009, LECT NOTES COMPUT SC, V5575, P410, DOI 10.1007/978-3-642-02230-2_42
[8]   Computer Vision in Cell Biology [J].
Danuser, Gaudenz .
CELL, 2011, 147 (05) :973-978
[9]   Accurate cell segmentation in microscopy images using membrane patterns [J].
Dimopoulos, Sotiris ;
Mayer, Christian E. ;
Rudolf, Fabian ;
Stelling, Joerg .
BIOINFORMATICS, 2014, 30 (18) :2644-2651
[10]   Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells [J].
Gaggioli, Cedric ;
Hooper, Steven ;
Hidalgo-Carcedo, Cristina ;
Grosse, Robert ;
Marshall, John F. ;
Harrington, Kevin ;
Sahai, Erik .
NATURE CELL BIOLOGY, 2007, 9 (12) :1392-U92