On the inversion of a generalized Radon transform of seismic type

被引:8
作者
Ustaoglu, Zekeriya [1 ]
机构
[1] Bulent Ecevit Univ, Fac Arts & Sci, Dept Math, TR-67100 Zonguldak, Turkey
关键词
Generalized Radon transform; Inversion formula; Numerical reconstruction;
D O I
10.1016/j.jmaa.2017.03.083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a generalized Radon transform (GRT) that integrates a function f (x(1), x(2)) on R-2 over a family of curves x(2) = u + s phi(x(1) - c) with respect to the variable x(1), for a real valued continuous function phi on R, u, s is an element of R and a fixed c is an element of R. We investigate the inversion of the GRT via the inversion of the regular Radon transform (RT). Depending on some conditions on f and phi, we obtain some inversion formulas and also describe a method for the numerical reconstruction of f from its GRT. Numerical results are presented to demonstrate the feasibility of the proposed method. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:287 / 303
页数:17
相关论文
共 50 条
  • [41] Inversion and characterization of the hemispherical transform
    Boris Rubin
    Journal d’Analyse Mathématique, 1999, 77 : 105 - 128
  • [42] Continuity and inversion of the wavelet transform
    Pathak, RS
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 6 (1-4) : 85 - 93
  • [43] Variational regularization of the weighted conical Radon transform
    Haltmeier, Markus
    Schiefeneder, Daniela
    INVERSE PROBLEMS, 2018, 34 (12)
  • [44] Fast Laplace Transforms for the Exponential Radon Transform
    Andersson, Fredrik
    Carlsson, Marcus
    Nikitin, Viktor V.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2018, 24 (02) : 431 - 450
  • [45] Radial wavelet and Radon transform on the Heisenberg group
    Yin, Mingkai
    He, Jianxun
    APPLICABLE ANALYSIS, 2014, 93 (01) : 1 - 13
  • [46] Inversion Problem for Radon Transforms Defined on Pseudoconvex Sets
    Anikonov, D. S.
    Konovalova, D. S.
    DOKLADY MATHEMATICS, 2024, 109 (02) : 175 - 178
  • [47] Inversion formulas for the continuous wavelet transform
    Weisz, F.
    ACTA MATHEMATICA HUNGARICA, 2013, 138 (03) : 237 - 258
  • [48] Inversion formulas for the continuous wavelet transform
    Ferenc Weisz
    Acta Mathematica Hungarica, 2013, 138 : 237 - 258
  • [49] SOME RESULTS OF THE RANGE ABOUT THE EXPONENTIAL RADON TRANSFORM
    Li, Jing
    Wang, Jin-Ping
    BOUNDARY VALUE PROBLEMS, INTEGRAL EQUATIONS AND RELATED PROBLEMS, 2011, : 392 - 398
  • [50] Exact reconstruction formulas for a Radon transform over cones
    Haltmeier, Markus
    INVERSE PROBLEMS, 2014, 30 (03)