Quantizations of local surfaces and rebel instantons

被引:2
作者
Barmeier, Severin [1 ,2 ]
Gasparim, Elizabeth [3 ]
机构
[1] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
[2] Albert Ludwigs Univ Freiburg, Math Inst, Ernst Zermelo Str 1, D-79104 Freiburg, Germany
[3] Univ Catolica Norte, Dept Matemat, Angamos 0610, Antofagasta, Chile
关键词
Deformation quantization; moduli spaces of vector bundles; noncommutative instantons; DEFORMATION QUANTIZATION; HOCHSCHILD COHOMOLOGY; VECTOR-BUNDLES; CONSTRUCTION; MODULI;
D O I
10.4171/JNCG/443
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct explicit deformation quantizations of the noncompact complex surfaces Z(k) := Tot(O-p (1) (-k)) and describe their effect on moduli spaces of vector bundles and instanton moduli spaces. We introduce the concept of rebel instantons, as being those which react badly to some quantizations, misbehaving by shooting off extra families of noncommutative instantons. We then show that the quantum instanton moduli space can be viewed as the stale space of a constructible sheaf over the classical instanton moduli space with support on rebel instantons.
引用
收藏
页码:311 / 351
页数:41
相关论文
共 36 条
[1]  
[Anonymous], 1995, The Kobayashi-Hitchin Correspondence
[2]   CONSTRUCTION OF INSTANTONS [J].
ATIYAH, MF ;
HITCHIN, NJ ;
DRINFELD, VG ;
MANIN, YI .
PHYSICS LETTERS A, 1978, 65 (03) :185-187
[3]   Local moduli of holomorphic bundles [J].
Ballicio, E. ;
Gasparim, E. ;
Koeppe, T. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (04) :397-408
[4]   Numerical invariants for bundles on blow-ups [J].
Ballico, E ;
Gasparim, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (01) :23-32
[5]   Rank 2 vector bundles in a neighborhood of an exceptional curve of a smooth surface [J].
Ballico, E .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1999, 29 (04) :1185-1193
[6]   VECTOR BUNDLES NEAR NEGATIVE CURVES: MODULI AND LOCAL EULER CHARACTERISTIC [J].
Ballico, E. ;
Gasparim, E. ;
Koeppe, T. .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (08) :2688-2713
[7]   Multiple zeta values in deformation quantization [J].
Banks, Peter ;
Panzer, Erik ;
Pym, Brent .
INVENTIONES MATHEMATICAE, 2020, 222 (01) :79-159
[8]   Deformation-obstruction theory for diagrams of algebras and applications to geometry [J].
Barmeier, Severin ;
Fregier, Yael .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2020, 14 (03) :1019-1047
[9]   Classical deformations of noncompact surfaces and their moduli of instantons [J].
Barmeier, Severin ;
Gasparim, Elizabeth .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (06) :2543-2561