Sturm-Liouville Problems with Transfer Condition Herglotz Dependent on the Eigenparameter: Hilbert Space Formulation

被引:12
作者
Bartels, Casey [1 ]
Currie, Sonja [1 ]
Nowaczyk, Marlena [2 ]
Watson, Bruce Alastair [1 ]
机构
[1] Univ Witwatersrand, Sch Math, Private Bag 3,PO WITS, ZA-2050 Johannesburg, South Africa
[2] AGH Univ Sci & Technol, Fac Appl Math, Al A Mickiewicza 30, PL-30059 Krakow, Poland
关键词
Sturm-Liouville; Transmission condition; BOUNDARY; OPERATORS;
D O I
10.1007/s00020-018-2463-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a Sturm-Liouville equation ly := -y '' + qy = lambda y on the intervals (-a, 0) and (0, b) with a, b > 0 and q is an element of L-2 (-a, b). We impose boundary conditions y(-a) cos alpha = y' (-a) sin alpha, y(b) cos beta = y' (b) sin beta, where alpha is an element of [0, pi) and beta is an element of (0, pi], together with transmission conditions rationally-dependent on the eigenparameter via - y(0(+)) (lambda eta - xi - Sigma(N)(i=1) b(i)(2)/lambda - c(i)) = y' (0(+)) - y' (0(-)), y'(0(-)) (lambda kappa - zeta - Sigma(M)(j=1) a(j)(2)/lambda - d(j)) = y (0(+)) - y (0(-)), with b(i), a(j) > 0 for i = 1,..., N, and j = 1,..., M. Here we take eta, kappa >= 0 and N, M is an element of N-0. The geometric multiplicity of the eigenvalues is considered and the cases in which the multiplicity can be 2 are characterized. An example is given to illustrate the cases. A Hilbert space formulation of the above eigenvalue problem as a self-adjoint operator eigenvalue problem in L-2 (-a, b) circle plus C-N* circle plus C-M*, for suitable N*, M*, is given. The Green's function and the resolvent of the related Hilbert space operator are expressed explicitly.
引用
收藏
页数:20
相关论文
共 21 条
[1]  
AGMON S, 2010, Lectures on elliptic boundary value problems
[2]   Discontinuous Sturm-Liouville problems with eigenparameter-dependent boundary and transmissions conditions [J].
Akdogan, Z ;
Demirci, M ;
Mukhtarov, OS .
ACTA APPLICANDAE MATHEMATICAE, 2005, 86 (03) :329-344
[3]  
Albeverio S., 1988, Solvable Models in Quantum Mechanics
[4]  
[Anonymous], J DIFFERENTIAL EQ
[5]  
[Anonymous], 1990, EQUATIONS MATH PHYS
[6]  
[Anonymous], STURM LIOUVILLE OPER
[7]   Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter. I [J].
Binding, PA ;
Browne, PJ ;
Watson, BA .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2002, 45 :631-645
[8]   Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, II [J].
Binding, PA ;
Browne, PJ ;
Watson, BA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 148 (01) :147-168
[9]   Resolvent Operator and Self-Adjointness of Sturm-Liouville Operators with a Finite Number of Transmission Conditions [J].
Dehghani, I. ;
Akbarfam, A. Jodayree .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (02) :447-462
[10]   One-dimensional Schrodinger operators with δ'-interactions on Cantor-type sets [J].
Eckhardt, Jonathan ;
Kostenko, Aleksey ;
Malamud, Mark ;
Teschl, Gerald .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (02) :415-449