Novel persistence genes in Pseudomonas aeruginosa identified by high-throughput screening

被引:94
作者
De Groote, Valerie N. [1 ]
Verstraeten, Natalie [1 ]
Fauvart, Maarten [1 ]
Kint, Cyrielle I. [1 ]
Verbeeck, Aline M. [1 ]
Beullens, Serge [1 ]
Cornelis, Pierre [2 ]
Michiels, Jan [1 ]
机构
[1] Katholieke Univ Leuven, Ctr Microbial & Plant Genet, B-3001 Louvain, Belgium
[2] Vrije Univ Brussel VIB, Lab Microbial Interact, Dept Mol & Cellular Interact, B-1050 Brussels, Belgium
关键词
antibiotic tolerance; persisters; ofloxacin; stationary phase; biofilm; ESCHERICHIA-COLI; FUNCTIONAL-ANALYSIS; ANTIBIOTIC-RESISTANCE; MULTIDRUG TOLERANCE; DRUG-RESISTANCE; BIOFILMS; CELLS; INFECTIONS; DNA; ANTIMICROBIALS;
D O I
10.1111/j.1574-6968.2009.01657.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Persister cells are phenotypic variants that are extremely tolerant to high concentrations of antibiotics. They constitute a fraction of stationary phase cultures and biofilm populations of numerous bacterial species, such as the opportunistic pathogen Pseudomonas aeruginosa. Even though persisters are believed to be an important cause of incomplete elimination of infectious populations by antibiotics, their nature remains obscure. Most studies on persistence have focused on the model organism Escherichia coli and only a limited number of persistence genes have been identified to date. We performed the first large-scale screening of a P. aeruginosa PA14 mutant library to identify novel genes involved in persistence. A total of 5000 mutants were screened in a high-throughput manner and nine new persistence mutants were identified. Four mutants (with insertions in dinG, spuC, PA14_17880 and PA14_66140) exhibited a low persister phenotype and five mutants (in algR, pilH, ycgM, pheA and PA14_13680) displayed high persistence. These genes may serve as new candidate drug targets in the combat against P. aeruginosa infections.
引用
收藏
页码:73 / 79
页数:7
相关论文
共 36 条
[21]   Opinion - Non-inherited antibiotic resistance [J].
Levin, Bruce R. ;
Rozen, Daniel E. .
NATURE REVIEWS MICROBIOLOGY, 2006, 4 (07) :556-562
[22]  
Lewis K, 2008, CURR TOP MICROBIOL, V322, P107
[23]   Functional analysis and regulation of the divergent spuABCDEFGH-spuI operons for polyamine uptake and utilization in Pseudomonas aeruginosa PAO1 [J].
Lu, CD ;
Itoh, Y ;
Nakada, Y ;
Jiang, Y .
JOURNAL OF BACTERIOLOGY, 2002, 184 (14) :3765-3773
[24]   Lung infections associated with cystic fibrosis [J].
Lyczak, JB ;
Cannon, CL ;
Pier, GB .
CLINICAL MICROBIOLOGY REVIEWS, 2002, 15 (02) :194-+
[25]   Effective symbiosis between Rhizobium etli and Phaseolus vulgatis requires the alarmone ppGpp [J].
Moris, M ;
Braeken, K ;
Schoeters, E ;
Verreth, C ;
Beullens, S ;
Vanderleyden, J ;
Michiels, J .
JOURNAL OF BACTERIOLOGY, 2005, 187 (15) :5460-5469
[26]   HIPA, A NEWLY RECOGNIZED GENE OF ESCHERICHIA-COLI K-12 THAT AFFECTS FREQUENCY OF PERSISTENCE AFTER INHIBITION OF MUREIN SYNTHESIS [J].
MOYED, HS ;
BERTRAND, KP .
JOURNAL OF BACTERIOLOGY, 1983, 155 (02) :768-775
[27]   Role for RpoS gene of Pseudomonas aeruginosa in antibiotic tolerance [J].
Murakami, K ;
Ono, T ;
Viducic, D ;
Kayama, S ;
Mori, M ;
Hirota, K ;
Nemoto, K ;
Miyake, Y .
FEMS MICROBIOLOGY LETTERS, 2005, 242 (01) :161-167
[28]   Emergence of vancomycin tolerance in Streptococcus pneumoniae [J].
Novak, R ;
Henriques, B ;
Charpentier, E ;
Normark, S ;
Tuomanen, E .
NATURE, 1999, 399 (6736) :590-593
[29]   ClpXP proteases positively regulate alginate overexpression and mucoid conversion in Pseudomonas aeruginosa [J].
Qiu, Dongru ;
Esinger, Vonya M. ;
Head, Nathan E. ;
Pier, Gerald B. ;
Yu, Hongwei D. .
MICROBIOLOGY-SGM, 2008, 154 :2119-2130
[30]   Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials [J].
Spoering, AL ;
Lewis, K .
JOURNAL OF BACTERIOLOGY, 2001, 183 (23) :6746-6751