Harnessing Solar-Driven Photothermal Effect toward the Water-Energy Nexus

被引:320
作者
Zhang, Chao [1 ]
Liang, Hong-Qing [2 ,3 ]
Xu, Zhi-Kang [4 ]
Wang, Zuankai [1 ]
机构
[1] City Univ Hong Kong, Dept Mech Engn, Hong Kong, Peoples R China
[2] Aarhus Univ, Carbon Dioxide Activat Ctr CADIAC, Interdisciplinary Nanosci Ctr iNANO, DK-8000 Aarhus C, Denmark
[3] Aarhus Univ, Dept Chem, DK-8000 Aarhus C, Denmark
[4] Zhejiang Univ, Dept Polymer Sci & Engn, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
interfacial evaporation; low-energy desalination; photothermal effect; solar energy; water harvesting; water-energy nexus; REDUCED GRAPHENE OXIDE; ENHANCED PHOTOCATALYTIC ACTIVITY; METAL-ORGANIC FRAMEWORKS; HIGHLY EFFICIENT; MEMBRANE DISTILLATION; POLYDOPAMINE COATINGS; VAPOR GENERATION; STEAM-GENERATION; FAST CLEANUP; NANOFILTRATION MEMBRANES;
D O I
10.1002/advs.201900883
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Producing affordable freshwater has been considered as a great societal challenge, and most conventional desalination technologies are usually accompanied with large energy consumption and thus struggle with the trade-off between water and energy, i.e., the water-energy nexus. In recent decades, the fast development of state-of-the-art photothermal materials has injected new vitality into the field of freshwater production, which can effectively harness abundant and clean solar energy via the photothermal effect to fulfill the blue dream of low-energy water purification/harvesting, so as to reconcile the water-energy nexus. Driven by the opportunities offered by photothermal materials, tremendous effort has been made to exploit diverse photothermal-assisted water purification/harvesting technologies. At this stage, it is imperative and important to review the recent progress and shed light on the future trend in this multidisciplinary field. Here, a brief introduction of the fundamental mechanism and design principle of photothermal materials is presented, and the emerging photothermal applications such as photothermal-assisted water evaporation, photothermal-assisted membrane distillation, photothermal-assisted crude oil cleanup, photothermal-enhanced photocatalysis, and photothermal-assisted water harvesting from air are summarized. Finally, the unsolved challenges and future perspectives in this field are emphasized. It is envisioned that this work will help arouse future research efforts to boost the development of solar-driven low-energy water purification/harvesting.
引用
收藏
页数:28
相关论文
共 210 条
[61]   N-doped graphene/carbon hybrid aerogels for efficient solar steam generation [J].
Huo, Bingbing ;
Jiang, Degang ;
Cao, Xueying ;
Liang, Hui ;
Liu, Zhen ;
Li, Chenwei ;
Liu, Jingquan .
CARBON, 2019, 142 :13-19
[62]   Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine [J].
Jain, Prashant K. ;
Huang, Xiaohua ;
El-Sayed, Ivan H. ;
El-Sayed, Mostafa A. .
ACCOUNTS OF CHEMICAL RESEARCH, 2008, 41 (12) :1578-1586
[63]   Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation [J].
Jiang, Qisheng ;
Derami, Hamed Gholami ;
Ghim, Deoukchen ;
Cao, Sisi ;
Jun, Young-Shin ;
Singamaneni, Srikanth .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (35) :18397-18402
[64]   A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation [J].
Jin, Yong ;
Chang, Jian ;
Shi, Yusuf ;
Shi, Le ;
Hong, Seunghyun ;
Wang, Peng .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (17) :7942-7949
[65]   Metal-Organic Frameworks for Water Harvesting from Air [J].
Kalmutzki, Markus J. ;
Diercks, Christian S. ;
Yaghi, Omar M. .
ADVANCED MATERIALS, 2018, 30 (37)
[66]   A flexible anti-clogging graphite film for scalable solar desalination by heat localization [J].
Kashyap, Varun ;
Al-Bayati, Abdullah ;
Sajadi, Seyed Mohammad ;
Irajizad, Peyman ;
Wang, Sing Hi ;
Ghasemi, Hadi .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (29) :15227-15234
[67]   Membranes and theoretical modeling of membrane distillation: A review [J].
Khayet, Mohamed .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2011, 164 (1-2) :56-88
[68]   Adsorption-based atmospheric water harvesting device for arid climates [J].
Kim, Hyunho ;
Rao, Sameer R. ;
Kapustin, Eugene A. ;
Zhao, Lin ;
Yang, Sungwoo ;
Yaghi, Omar M. ;
Wang, Evelyn N. .
NATURE COMMUNICATIONS, 2018, 9
[69]   Water harvesting from air with metal-organic frameworks powered by natural sunlight [J].
Kim, Hyunho ;
Yang, Sungwoo ;
Rao, Sameer R. ;
Narayanan, Shankar ;
Kapustin, Eugene A. ;
Furukawa, Hiroyasu ;
Umans, Ari S. ;
Yaghi, Omar M. ;
Wang, Evelyn N. .
SCIENCE, 2017, 356 (6336) :430-432
[70]   TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations - A review [J].
Konstantinou, IK ;
Albanis, TA .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2004, 49 (01) :1-14