THE GENERALISED NON-COMMUTING GRAPH OF A FINITE GROUP

被引:0
作者
Ghayekhloo, Somayeh [1 ]
Erfanian, Ahmad [2 ,3 ]
Tolue, Behnaz [4 ]
机构
[1] Ferdowsi Univ Mashhad, Mashhad, Iran
[2] Ferdowsi Univ Mashhad, Dept Math, Mashhad, Iran
[3] Ferdowsi Univ Mashhad, Ctr Excellence Anal Algebra Struct, Mashhad, Iran
[4] Hakim Sabzevari Univ, Dept Pure Math, Sabzevar, Iran
来源
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES | 2014年 / 67卷 / 08期
关键词
commutativity degree; non-abelian group; non-commuting graph;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we define the generalised non-commuting graph Gamma((H,K)), where H and K are two subgroups of a non-abelian group G. Take (H boolean OR K) \ (C-H (K) boolean OR C-K (H)) as the vertices of the graph and two distinct vertices x and y join, whenever x or y is in H and [x, y] not equal 1. We obtain diameter and girth of this graph. Also, we discuss the dominating set and planarity of Gamma((H,K)). Moreover, we try to find a connection between Gamma((H,K)) and the relative commutativity degree of two subgroups d(H, K). Furthermore, we prove that if Gamma((H,G)) congruent to Gamma((K,G)), then Gamma(H) congruent to Gamma(K). And finally we introduce a special case when subgroup K is equal to the non-abelian group G.
引用
收藏
页码:1037 / 1044
页数:8
相关论文
共 12 条
  • [1] Non-commuting graph of a group
    Abdollahi, A
    Akbari, S
    Maimani, HR
    [J]. JOURNAL OF ALGEBRA, 2006, 298 (02) : 468 - 492
  • [2] When a zero-divisor graph is planar or a complete r-partite graph
    Akbari, S
    Maimani, HR
    Yassemi, S
    [J]. JOURNAL OF ALGEBRA, 2003, 270 (01) : 169 - 180
  • [3] The zero-divisor graph of a commutative ring
    Anderson, DF
    Livingston, PS
    [J]. JOURNAL OF ALGEBRA, 1999, 217 (02) : 434 - 447
  • [4] [Anonymous], 2003, J MATH SCI-U TOKYO
  • [5] ON A GRAPH RELATED TO CONJUGACY CLASSES OF GROUPS
    BERTRAM, EA
    HERZOG, M
    MANN, A
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1990, 22 : 569 - 575
  • [6] Das AK, 2010, INT ELECTRON J ALGEB, V7, P140
  • [7] Erfanian A., 2012, J ALGEBRA ITS APPL, V8
  • [8] WHAT IS PROBABILITY THAT 2 GROUP ELEMENTS COMMUTE
    GUSTAFSON, WH
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (09) : 1031 - 1034
  • [9] On the noncommuting graph associated with a finite group
    Moghaddamfar, AR
    Shi, WJ
    Zhou, W
    Zokayi, AR
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2005, 46 (02) : 325 - 332
  • [10] Neumann B.H., 1976, J AUSTR MATH SOC A, V21, P467