Gradual internal reforming of ethanol in solid oxide fuel cells

被引:6
|
作者
Nobrega, S. D. [1 ]
Fonseca, F. C. [1 ]
Gelin, P.
Noronha, F. B.
Georges, S.
Steil, M. C.
机构
[1] IPEN, BR-05508000 Sao Paulo, Brazil
来源
FUEL CELLS 2012 SCIENCE & TECHNOLOGY - A GROVE FUEL CELL EVENT | 2012年 / 28卷
关键词
Ceria-based catalytic layer; Gradual internal reforming; Ethanol; Optimisation; METHANE; SOFC; ANODE; CATALYSTS; HYDROGEN; NI;
D O I
10.1016/j.egypro.2012.08.037
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electrolyte (yttria-stabilised zirconia, YSZ) supported solid oxide fuel cells (SOFCs) were fabricated using spin coating of standard LSM cathode and Ni-YSZ cermet anode. A ceria-based catalytic layer was deposited onto the anode with a special current collector design. Such a single cell configuration allows operation by gradual internal reforming of direct carbon-containing fuels. First, the fabricated single cells were operated with hydrogen to determine the optimised conditions of fuel concentration and flow rate regarding faradaic efficiency. Then, the fuel was switched to dry ethanol and the cells were operated for several hours (100 h) with good stability. Post-operation electron microcopy analyses revealed no carbon formation in the anode layer. The results indicate that the gradual internal reforming mechanism is effective, opening up the way to multi-fuel SOFCs, provided that a suitable catalyst layer and cell design are available. (C) 2012 Published by Elsevier Ltd.
引用
收藏
页码:28 / 36
页数:9
相关论文
共 50 条
  • [31] Operation of a solid oxide fuel cell under direct internal reforming of liquid fuels
    Leone, P.
    Lanzini, A.
    Ortigoza-Villalba, G. A.
    Borchiellini, R.
    CHEMICAL ENGINEERING JOURNAL, 2012, 191 : 349 - 355
  • [32] Biogas fuel reforming for solid oxide fuel cells
    Murphy, Danielle M.
    Richards, Amy E.
    Colclasure, Andrew
    Rosensteel, Wade A.
    Sullivan, Neal P.
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2012, 4 (02)
  • [33] Biogas Fuel Reforming for Solid Oxide Fuel Cells
    Murphy, Danielle M.
    Richards, Amy E.
    Colclasure, Andrew
    Rosensteel, Wade
    Sullivan, Neal P.
    SOLID OXIDE FUEL CELLS 12 (SOFC XII), 2011, 35 (01): : 2653 - 2667
  • [34] Methane internal steam reforming in solid oxide fuel cells at intermediate temperatures
    Khan, Muhammad Shirjeel
    Miura, Yohei
    Fukuyama, Yosuke
    Gao, Shuai
    Zhu, Zhonghua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (29) : 13969 - 13979
  • [35] Direct utilization of ethanol on ceria-based anodes for solid oxide fuel cells
    Cimenti, Massimiliano
    Hill, Josephine M.
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2009, 4 (01) : 45 - 54
  • [36] Numerical analysis of an internal methane reforming solid oxide fuel cell with fuel recycling
    Eveloy, Valerie
    APPLIED ENERGY, 2012, 93 : 107 - 115
  • [37] Ethanol internal reforming in solid oxide fuel cells: A path toward high performance metal-supported cells for vehicular applications
    Dogdibegovic, Emir
    Fukuyama, Yosuke
    Tucker, Michael C.
    JOURNAL OF POWER SOURCES, 2020, 449 (449)
  • [38] NiMo/CZ internal reforming layer for ethanol- fueled metal-supported solid oxide fuel cell
    Dewa, Martinus
    Han, Jonghyun
    Fang, Liyang
    Liu, Fan
    Duan, Chuancheng
    Hussain, A. Mohammed
    Miura, Yohei
    Dong, Song
    Fukuyama, Yosuke
    Furuya, Yoshihisa
    Dale, Nilesh
    Marin-Flores, Oscar G.
    Saunders, Steven
    Ha, Su
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 1408 - 1416
  • [39] Numerical study on effects of CH4-CO2 internal reforming on electrochemical performance and carbon deposition of solid oxide fuel cell
    Li, Mingfei
    Chen, Zhengpeng
    Zhang, Jun
    Hou, Longtong
    Xiong, Kai
    Rao, Mumin
    Chen, Chuangting
    Xu, Hanzhao
    Wang, Xinxin
    Ling, Yihan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 528 - 537
  • [40] Implications for using biogas as a fuel source for solid oxide fuel cells: internal dry reforming in a small tubular solid oxide fuel cell
    Staniforth, J
    Ormerod, RM
    CATALYSIS LETTERS, 2002, 81 (1-2) : 19 - 23