CDK1 and CDK2 regulate NICD1 turnover and the periodicity of the segmentation clock

被引:27
作者
Carrieri, Francesca Anna [1 ]
Murray, Philip J. [2 ]
Ditsova, Dimitrinka [1 ]
Ferris, Margaret Ashley [3 ]
Davies, Paul [4 ]
Dale, Jacqueline Kim [1 ]
机构
[1] Univ Dundee, Sch Life Sci, Div Cell & Dev Biol, Dundee, Scotland
[2] Univ Dundee, Dept Math, Dundee, Scotland
[3] Washington Univ, Sch Med, Dept Pediat, St Louis, MO 63110 USA
[4] Univ Dundee, Med Res Council Prot Phosphorylat & Ubiquitylat U, Sch Life Sci, Dundee, Scotland
基金
英国惠康基金;
关键词
cell cycle; FBXW7; Notch; phosphorylation; somitogenesis; RNA-POLYMERASE-II; VERTEBRATE SEGMENTATION; OSCILLATORY EXPRESSION; LEUKEMIC-CELLS; NOTCH; INHIBITOR; PHOSPHORYLATION; TRANSCRIPTION; ACTIVATION; MECHANISM;
D O I
10.15252/embr.201846436
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
All vertebrates share a segmented body axis. Segments form from the rostral end of the presomitic mesoderm (PSM) with a periodicity that is regulated by the segmentation clock. The segmentation clock is a molecular oscillator that exhibits dynamic clock gene expression across the PSM with a periodicity that matches somite formation. Notch signalling is crucial to this process. Altering Notch intracellular domain (NICD) stability affects both the clock period and somite size. However, the mechanism by which NICD stability is regulated in this context is unclear. We identified a highly conserved site crucial for NICD recognition by the SCF E3 ligase, which targets NICD for degradation. We demonstrate both CDK1 and CDK2 can phosphorylate NICD in the domain where this crucial residue lies and that NICD levels vary in a cell cycle-dependent manner. Inhibiting CDK1 or CDK2 activity increases NICD levels both in vitro and in vivo, leading to a delay of clock gene oscillations and an increase in somite size.
引用
收藏
页数:22
相关论文
共 89 条
[1]   Cdc2-cyclin E complexes regulate the G1/S phase transition [J].
Aleem, E ;
Kiyokawa, H ;
Kaldis, P .
NATURE CELL BIOLOGY, 2005, 7 (08) :831-U93
[2]   Notch signaling: Cell fate control and signal integration in development [J].
Artavanis-Tsakonas, S ;
Rand, MD ;
Lake, RJ .
SCIENCE, 1999, 284 (5415) :770-776
[3]   Short-lived Her proteins drive robust synchronized oscillations in the zebrafish segmentation clock [J].
Ay, Ahmet ;
Knierer, Stephan ;
Sperlea, Adriana ;
Holland, Jack ;
Oezbudak, Ertugrul M. .
DEVELOPMENT, 2013, 140 (15) :3244-3253
[4]   Cdk1: the dominant sibling of Cdk2 [J].
Bashir, T ;
Pagano, M .
NATURE CELL BIOLOGY, 2005, 7 (08) :779-781
[5]   Cdk2 knockout mice are viable [J].
Berthet, C ;
Aleem, E ;
Coppola, V ;
Tessarollo, L ;
Kaldis, P .
CURRENT BIOLOGY, 2003, 13 (20) :1775-1785
[6]   Notch activation stimulates migration of breast cancer cells and promotes tumor growth [J].
Bolos, Victoria ;
Mira, Emilia ;
Martinez-Poveda, Beatriz ;
Luxan, Guillermo ;
Canamero, Marta ;
Martinez-A, Carlos ;
Manes, Santos ;
Luis de la Pompa, Jose .
BREAST CANCER RESEARCH, 2013, 15 (04)
[7]   Turn It Down a Notch [J].
Carrieri, Francesca A. ;
Dale, Jacqueline Kim .
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2017, 4
[8]   Identification of CDK2 substrates in human cell lysates [J].
Chi, Yong ;
Welcker, Markus ;
Hizli, Asli A. ;
Posakony, Jeffrey J. ;
Aebersold, Ruedi ;
Clurman, Bruce E. .
GENOME BIOLOGY, 2008, 9 (10)
[9]   Identification of a conserved negative regulatory sequence that influences the leukemogenic activity of NOTCH1 [J].
Chiang, Mark Y. ;
Xu, Mina L. ;
Histen, Gavin ;
Shestova, Olga ;
Roy, Monideepa ;
Nam, Yunsun ;
Blacklow, Stephen C. ;
Sacks, David B. ;
Pear, Warren S. ;
Aster, Jon C. .
MOLECULAR AND CELLULAR BIOLOGY, 2006, 26 (16) :6261-6271
[10]   Roscovitine in cancer and other diseases [J].
Cicenas, Jonas ;
Kalyan, Karthik ;
Sorokinas, Aleksandras ;
Stankunas, Edvinas ;
Levy, Josh ;
Meskinyte, Ingrida ;
Stankevicius, Vaidotas ;
Kaupinis, Algirdas ;
Valius, Mindaugas .
ANNALS OF TRANSLATIONAL MEDICINE, 2015, 3 (10)