Homogenization of the oscillating Dirichlet boundary condition in general domains

被引:16
作者
Feldman, William M. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2014年 / 101卷 / 05期
关键词
Homogenization; Discontinuous boundary data; Fully nonlinear elliptic equations; Boundary layers; PARTIAL-DIFFERENTIAL-EQUATIONS; VISCOSITY SOLUTIONS; PERIODIC HOMOGENIZATION;
D O I
10.1016/j.matpur.2013.07.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the homogenization of the Dirichlet problem for fully nonlinear uniformly elliptic operators with periodic oscillation in the operator and in the boundary condition for a general class of smooth bounded domains. This extends the previous results of Barles and Mironescu (2012) [4] in half spaces. We show that homogenization holds despite a possible lack of continuity in the homogenized boundary data. The proof is based on a comparison principle with partial Dirichlet boundary data which is of independent interest. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:599 / 622
页数:24
相关论文
共 21 条
[1]  
[Anonymous], 1995, Fully nonlinear elliptic equations
[2]   Long time averaged reflection force and homogenization of oscillating Neumann boundary conditions [J].
Arisawa, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (02) :293-332
[3]   Singular Solutions of Fully Nonlinear Elliptic Equations and Applications [J].
Armstrong, Scott N. ;
Sirakov, Boyan ;
Smart, Charles K. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (02) :345-394
[4]   EXIT TIME PROBLEMS IN OPTIMAL-CONTROL AND VANISHING VISCOSITY METHOD [J].
BARLES, G ;
PERTHAME, B .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (05) :1133-1148
[5]   Ergodic Problems and Periodic Homogenization for Fully Nonlinear Equations in Half-space Type Domains with Neumann Boundary Conditions [J].
Barles, G. ;
Da Lio, F. ;
Lions, P-L. ;
Souganidis, P. E. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (05) :2355-2375
[6]  
Barles G., 2012, HOMOGENIZATION PROBL
[7]  
Bensoussan A., 1978, Asymptotic analysis for periodic structures
[8]   Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media [J].
Caffarelli, LA ;
Souganidis, PE ;
Wang, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (03) :319-361
[9]  
Choi S., 2013, HOMOGENIZATION NONLI
[10]   HOMOGENIZATION OF NEUMANN BOUNDARY DATA WITH FULLY NONLINEAR OPERATOR [J].
Choi, Sunhi ;
Kim, Inwon C. ;
Lee, Ki-Ahm .
ANALYSIS & PDE, 2013, 6 (04) :951-972