Non-scale-invariant inverse curvature flows in Euclidean space

被引:53
作者
Gerhardt, Claus [1 ]
机构
[1] Heidelberg Univ, Inst Angew Math, D-69120 Heidelberg, Germany
关键词
SURFACES; HYPERSURFACES; SPHERES;
D O I
10.1007/s00526-012-0589-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the inverse curvature flows (x) over dot = F-p nu of closed star-shaped hypersurfaces in Euclidean space in case 0 < p not equal 1 and prove that the flow exists for all time and converges to infinity, if 0 < p < 1, while in case p > 1, the flow blows up in finite time, and where we assume the initial hypersurface to be strictly convex. In both cases the properly rescaled flows converge to the unit sphere.
引用
收藏
页码:471 / 489
页数:19
相关论文
共 10 条
[1]   Aleksandrov reflection and nonlinear evolution equations .1. The n-sphere and n-ball [J].
Chow, B ;
Gulliver, R .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (03) :249-264
[2]  
GERHARDT C, 1990, J DIFFER GEOM, V32, P299
[3]  
Gerhardt C., 2006, SERIES GEOMETRY TOPO, V39
[4]  
Gerhardt C., 1996, GEOMETRIC ANAL CALCU, P71
[5]  
Gerhardt C., 2008, Geometric Flows, Surv. Differ. Geom., V12, P113
[6]  
HUISKEN G, 1984, J DIFFER GEOM, V20, P237
[7]   SURFACES EXPANDING BY THE POWER OF THE GAUSS CURVATURE FLOW [J].
Li, Qi-Rui .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (11) :4089-4102
[8]  
McCoy J., 2003, ASIAN J MATH, V7, P7, DOI DOI 10.4310/AJM.2003.V7.N1.A2
[9]   Surfaces expanding by the inverse Gauβ curvature flow [J].
Schnuerer, Oliver C. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 600 :117-134
[10]  
URBAS JIE, 1991, J DIFFER GEOM, V33, P91